A spring is an object that can be deformed by a force and then return to its original shape after the force is removed.Springs come in a huge variety of different forms, but the simple metal coil spring is probably the most familiar. Springs are an essential part of almost all moderately complex mechanical devices; from ball-point pens to racing car engines.
I’m sorry i haven’t found the answer to this
A marble rolls off a tabletop 1.15 m high and hits the floor at a point 4 m away from the edge of the table in the horizontal direction,
- t= 0.45 seconds.
- V=2.22m/s
- VT=4.95 m/s
This is further explained below.
<h3>What is its speed when it hits the floor...?</h3>
Generally, the equation for motion is mathematically given as
S= ut + 0.5at²
Therefore
y = Voy t + 0.5gt^2
1 = 0.5x 98 x 6²
1=4.9t^2

t= 0.45 seconds.
b) Horizontal motions are uniform.
V=Horizontal displacement/time
V=1/0.45
V=2.22m/s
C)
Vx: 2.22 m/s At bottom,
Vy² = Voy² + 2as
Vy² = 2x95x1
Vy² = 19.6
Total velocity

VT=4.95 m/s
Read more about Arithmetic
brainly.com/question/22568180
#SPJ1
1) Focal length
We can find the focal length of the mirror by using the mirror equation:

(1)
where
f is the focal length

is the distance of the object from the mirror

is the distance of the image from the mirror
In this case,

, while

(the distance of the image should be taken as negative, because the image is to the right (behind) of the mirror, so it is virtual). If we use these data inside (1), we find the focal length of the mirror:

from which we find

2) The mirror is convex: in fact, for the sign convention, a concave mirror has positive focal length while a convex mirror has negative focal length. In this case, the focal length is negative, so the mirror is convex.
3) The image is virtual, because it is behind the mirror and in fact we have taken its distance from the mirror as negative.
4) The radius of curvature of a mirror is twice its focal length, so for the mirror in our problem the radius of curvature is:
The first object is also negatively charged that is why people say opposites attract. have a good day!