A scientist can assess whether a pure niobium sample is responsible for contaminating the lab with radioactivity by testing the sample. By testing the niobium sample, a scientist can determine whether it has any other element.
I believe it’s force but i’m not really sure.
B. The apple from the bottom will hit the ground earlier. This is because an increase in height causes an increase in the time that the object will fall, and therefore will affect the final velocity of the falling object. Moreover, the reduction in velocity due to friction from the air should also be considered.
Answer:
20 degrees.
Explanation:
From Snell’s law of refraction:
sinθ1•n1 = sinθ2•n2
where θ1 is the incidence angle, θ2 is the refraction angle, n1 is the refraction index of light in medium1, and n2 is the refraction index for virgin olive oil. The incidence angle of the red light is θ1 = 30 degrees.
The red light is in air as medium1, so n1 (air) = 1.00029
So, to find θ2, the refracted angle:
sinθ1•1.00029 = sinθ2•1.464
sin(30)•1.00029 / 1.464 = sinθ2
0.5•1.00029 / 1.464 = sinθ2
sinθ2 = 0.3416291
θ2 = arcsin(0.3416291)
θ2 = 19.976 degrees
To the nearest degree,
θ2 = 20 degrees.
Answer:
From the question we are told that
The length of the rod is 
The speed is v
The angle made by the rod is 
Generally the x-component of the rod's length is

Generally the length of the rod along the x-axis as seen by the observer, is mathematically defined by the theory of relativity as

=> ![L_xo = [L_o cos (\theta )] \sqrt{1 - \frac{v^2}{c^2} }](https://tex.z-dn.net/?f=L_xo%20%20%3D%20%20%5BL_o%20cos%20%28%5Ctheta%20%29%5D%20%20%5Csqrt%7B1%20%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%20%7D)
Generally the y-component of the rods length is mathematically represented as

Generally the length of the rod along the y-axis as seen by the observer, is also equivalent to the actual length of the rod along the y-axis i.e
Generally the resultant length of the rod as seen by the observer is mathematically represented as

=> ![L_r = \sqrt{[ (L_o cos(\theta) [\sqrt{1 - \frac{v^2}{c^2} }\ \ ]^2+ L_o sin(\theta )^2)}](https://tex.z-dn.net/?f=L_r%20%20%3D%20%5Csqrt%7B%5B%20%28L_o%20cos%28%5Ctheta%29%20%5B%5Csqrt%7B1%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%20%7D%5C%20%5C%20%5D%5E2%2B%20L_o%20sin%28%5Ctheta%20%29%5E2%29%7D)
=> ![L_r= \sqrt{ (L_o cos(\theta)^2 * [ \sqrt{1 - \frac{v^2}{c^2} } ]^2 + (L_o sin(\theta))^2}](https://tex.z-dn.net/?f=L_r%3D%20%5Csqrt%7B%20%28L_o%20cos%28%5Ctheta%29%5E2%20%2A%20%5B%20%5Csqrt%7B1%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%20%7D%20%5D%5E2%20%2B%20%28L_o%20sin%28%5Ctheta%29%29%5E2%7D)
=> ![L_r = \sqrt{(L_o cos(\theta) ^2 [1 - \frac{v^2}{c^2} ] +(L_o sin(\theta))^2}](https://tex.z-dn.net/?f=L_r%20%20%3D%20%5Csqrt%7B%28L_o%20cos%28%5Ctheta%29%20%5E2%20%5B1%20-%20%5Cfrac%7Bv%5E2%7D%7Bc%5E2%7D%20%5D%20%2B%28L_o%20sin%28%5Ctheta%29%29%5E2%7D)
=> ![L_r = \sqrt{L_o^2 * cos^2(\theta) [1 - \frac{v^2 }{c^2} ]+ L_o^2 * sin(\theta)^2}](https://tex.z-dn.net/?f=L_r%20%3D%20%20%5Csqrt%7BL_o%5E2%20%2A%20cos%5E2%28%5Ctheta%29%20%20%5B1%20-%20%5Cfrac%7Bv%5E2%20%7D%7Bc%5E2%7D%20%5D%2B%20L_o%5E2%20%2A%20sin%28%5Ctheta%29%5E2%7D)
=> ![L_r = \sqrt{ [cos^2\theta +sin^2\theta ]- \frac{v^2 }{c^2}cos^2 \theta }](https://tex.z-dn.net/?f=L_r%20%20%3D%20%20%5Csqrt%7B%20%5Bcos%5E2%5Ctheta%20%2Bsin%5E2%5Ctheta%20%5D-%20%5Cfrac%7Bv%5E2%20%7D%7Bc%5E2%7Dcos%5E2%20%5Ctheta%20%7D)
=> 
Hence the length of the rod as measured by a stationary observer is

Generally the angle made is mathematically represented

=> 
=>
Explanation: