Copper II oxide is a compound.
Answer: 31! hope this helps!
Explanation:
Answer: The concentration of
will be
after 416 seconds have passed.
Explanation:
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = 
t = age of sample = ?
a = let initial amount of the reactant = 
a - x = amount left after decay process = 


The concentration of
will be
after 416 seconds have passed.
Hey there!:
Balanced Equation , for the reaction:
3 H₂SO₄(aq) + 2 Fe(s) → Fe₂(SO₄)₃(aq) + 3 H₂(g)
2 moles Fe ---------------------------------- 3 moles H₂
0.250 moles Fe ---------------------------- ( moles H₂ ) ??
____________________________________________
moles H₂ = 0.250 × 3 / 2
moles H₂ = 0.75 / 2
moles = 0.375 moles of H₂
Hope this helps!
Answer:
Explanation:
Utilizing Rydber's equation:
ΔE = Z²Rh ( 1/n₁² - 1/n₂²) and substituting the values given ( using the Rydbers constant value in Joules ), we have
n=1 to n= infinity
ΔE = 3² x (1/1² - 0) x 2.18 x 10⁻^18 J = 2.0 x 10⁻¹⁷ J (1/infinity is zero)
n= 3 to n= infinity
ΔE = 3² x (1/3² - 0) x 2.18 x 10⁻^18 J = 2.28 x 10^-18 J
b. The wavelength of the emitted can be obtained again by using Rydberg's equation but this time use the constant value 1.097 x 10⁷ m⁻¹ given in the problem .
1/λ = Z²Rh (1/n₁² - 1/n₂²) 10 ⁻¹ = 3² x 1.097 x 10⁷ m⁻¹ x (1/1² - 1/3²) m⁻¹
1/λ =8.8 x 10⁷ m⁻¹ ⇒ λ =1.1 x 10^-8 m
λ = 1.1 x 10^-8 m x 1 x 10⁹ nm/m = 11 nm