GCF(24, 30, 42) = 6 I think it is.
Answer: The value of k for which one root of the quadratic equation kx2 - 14x + 8 = 0 is six times the other is k = 3.
Let's look into the solution step by step.
Explanation:
Given: A quadratic equation, kx2 - 14x + 8 = 0
Let the two zeros of the equation be α and β.
According to the given question, if one of the roots is α the other root will be 6α.
Thus, β = 6α
Hence, the two zeros are α and 6α.
We know that for a given quadratic equation ax2 + bx + c = 0
The sum of the zeros is expressed as,
α + β = - b / a
The product of the zeros is expressed as,
αβ = c / a
For the given quadratic equation kx2 - 14x + 8 = 0,
a = k, b = -14, c = 8
The sum of the zeros is:
α + 6α = 14 / k [Since the two zeros are α and 6α]
⇒ 7α = 14 / k
⇒ α = 2 / k --------------- (1)
The product of the zeros is:
⇒ α × 6α = 8 / k [Since the two zeros are α and 6α]
⇒ 6α 2 = 8 / k
⇒ 6 (2 / k)2 = 8 / k [From (1)]
⇒ 6 × (4 / k) = 8
⇒ k = 24 / 8
⇒ k = 3
Answer:
d. 15 square yard
Step-by-step explanation:

Write the equation for what?
The infinite series description of trig functions is much neater when the argument is radians. For example, for small angles, sin(x) ≈ x when x is in radians. You could say that radians is the "natural" measurement unit for angles, just as "e" is the "natural" base of logarithms.
If the angle measure were degrees or grads or arcseconds, obnoxious scale factors would show up everywhere.