Let's handle this case by case.
Clearly, there's no way both children can be girls. There are then two cases:
Case 1: Two boys. In this case, we have 13 possibilities: the first is born on a Tuesday and the second is not (that's 6 possibilities, six ways to choose the day for the second boy), the first is not born on a Tuesday and the second is (6 more possibilities, same logic), and both are born on a Tuesday (1 final possibility), for a total of 13 possibilities with this case.
Case 2: A boy and a girl. In this case, there are 14 possibilities: The first is a boy born on a Tuesday and the second is a girl born on any day (7 possibilities, again choosing the day of the week. We are counting possibilities by days of the week, so we must be consistent here.), or the first is a girl born any day and the second is a boy born on a Tuesday (7 possibilities).
We're trying to find the probability of case 1 occurring given that case 1 or case 2 occurs. As there's 13+14=27 ways for either case to occur, we have a 13/27 probability that case 1 is the one that occurred.
Answer:
It is 33% because the probability is 1/3.
Step-by-step explanation:
Answer:
Step-by-step explanation:300
The answer is 5.8 because you find the difference on the x axis and you can’t have a negative distance so yea 5.8
Using the greatest common factor, it is found that the greatest dimensions each tile can have is of 3 feet.
---------------------------
- The widths of the walls are of <u>27 feet, 18 feet and 30 feet.</u>
- <u>The tiles must fit the width of each wall</u>, thus, the greatest dimension they can have is the greatest common factor of 27, 18 and 30.
To find their greatest common factor, these numbers must be factored into prime factors simultaneously, that is, only being divided by numbers of which all three are divisible, thus:
27 - 18 - 30|3
9 - 6 - 10
No numbers by which all of 9, 6 and 10 are divisible, thus, gcf(27,18,30) = 3 and the greatest dimensions each tile can have is of 3 feet.
A similar problem is given at brainly.com/question/6032811