Answer:

Explanation:
Given that,
The speed of light is 3×10⁸ m/s
We need to convert it into mi/hr.
Since, 1 mile = 1610 m
1 hour = 3600 s
So,

So, the required speed of light is
.
He was best known for the Continental Drift
Answer:
Explanation:
Here, a balance between attraction between nucleus and electrons, and electron-electron, and nuclei-nuclei repulsion play role.
All chemical bonds are formed by overlapping of orbitals. If the electronegativity of the two elements forming the bond is very different (elements from the 1st ,2nd groups with elements of 7th group) then ionic bond are formed. If the electronegativities are more similar, then overlapping is stronger, and covalent bonds are formed.
CH
3
C≡CH
2mole
HCl
A
CH
3
C(Cl)
2
CH
3
Heat
aq.KOH
B
CH
3
COCH
3
<u>Answer:</u> The amount of energy released per gram of
is -71.92 kJ
<u>Explanation:</u>
For the given chemical reaction:

The equation used to calculate enthalpy change is of a reaction is:
![\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f_{(product)}]-\sum [n\times \Delta H^o_f_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28reactant%29%7D%5D)
The equation for the enthalpy change of the above reaction is:
![\Delta H^o_{rxn}=[(5\times \Delta H^o_f_{(B_2O_3(s))})+(9\times \Delta H^o_f_{(H_2O(l))})]-[(2\times \Delta H^o_f_{(B_5H_9(l))})+(12\times \Delta H^o_f_{(O_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%285%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28B_2O_3%28s%29%29%7D%29%2B%289%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28H_2O%28l%29%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28B_5H_9%28l%29%29%7D%29%2B%2812%5Ctimes%20%5CDelta%20H%5Eo_f_%7B%28O_2%28g%29%29%7D%29%5D)
Taking the standard enthalpy of formation:

Putting values in above equation, we get:
![\Delta H^o_{rxn}=[(5\times (1271.94))+(9\times (-285.83))]-[(2\times (73.2))+(12\times (0))]\\\\\Delta H^o_{rxn}=-9078.57kJ](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo_%7Brxn%7D%3D%5B%285%5Ctimes%20%281271.94%29%29%2B%289%5Ctimes%20%28-285.83%29%29%5D-%5B%282%5Ctimes%20%2873.2%29%29%2B%2812%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H%5Eo_%7Brxn%7D%3D-9078.57kJ)
We know that:
Molar mass of pentaborane -9 = 63.12 g/mol
By Stoichiometry of the reaction:
If 2 moles of
produces -9078.57 kJ of energy.
Or,
If
of
produces -9078.57 kJ of energy
Then, 1 gram of
will produce =
of energy.
Hence, the amount of energy released per gram of
is -71.92 kJ