There are three significant figures, this is because the zero before the decimal does not count
Answer:
[O₃]= 8.84x10⁻⁷M
Explanation:
<u>The photodissociation of ozone by UV light is given by:</u>
O₃ + hν → O₂ + O (1)
<u>The first-order reaction of the equation (1) is:</u>
(2)
<em>where k: is the rate constant and Δ[O₃]/Δt: is the variation in the ozone concentration with time, and the negative sign is by the decrease in the reactant concentration </em>
<u>We can get the following expression of the </u><u>first-order integrated law</u><u> of the reaction (1), by resolving the equation (2):</u>
(3)
<em>where [O₃](t): is the ozone concentration in the elapsed time and [O₃]₀: is the initial ozone concentration</em>
We can calculate the initial ozone concentration using equation (3):
So, the ozone concentration after 10 days is 8.84x10⁻⁷M.
I hope it helps you!
Low melting points and boiling points. ...Low enthalpies of fusion and vaporization These properties are usually one or two orders of magnitude smaller than they are for ionic compounds.Soft or brittle solid forms. ...Poor electrical and thermal conductivity.
Answer:
a compound
Explanation:
a compound consists of two or more elements combined
Answer:

Explanation:
It often helps to write the heat as if it were a reactant or a product in the thermochemical equation.
Then you can consider it to be 11018 "moles" of "kJ"
We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.
M_r: 32.00
2C₈H₁₈ + 25O₂ ⟶ 16CO₂ + 8H₂O + 11 018 kJ
n/mol: 7280
1. Moles of O₂
The molar ratio is 25 mol O₂:11 018 kJ

2. Mass of O₂
