<span>d.2HNO3 (aq) + Sr(OH)2 (aq) → 2H2O (l) + Sr(NO3)2(aq)
4H </span>4H
8O 8O
2N 2N
1Sr 1Sr<span>
</span>
Answer:
What is the number of moles of carbon present in 44 grams of carbon dioxide? One. 44 grams is a mole of carbon dioxide and there is one carbon atom in CO 2 so there is one mole of carbon. That’s how chemistry works.
Explanation:
What is the number of moles of carbon present in 44 grams of carbon dioxide? One. 44 grams is a mole of carbon dioxide and there is one carbon atom in CO 2 so there is one mole of carbon. That’s how chemistry works.
Answer: The steepness of a ramp affects it by making it easier or harder.
Explanation: It's a bit situational. If you were going up a steep ramp with a heavy load, it will increase the work necessary, whereas if you were going down a ramp, it would decrease the work necessary. If you need this simply put, think about biking up and down a hill. It would be easier going down than up.
W=Fd
Work is equal to the force multiplied by the distance travelled.
Answer:
The half-life time, the team equired for a quantity to reduce to half of its initial value, is 79.67 seconds.
Explanation:
The half-life time = the time required for a quantity to reduce to half of its initial value. Half of it's value = 50%.
To calculate the half-life time we use the following equation:
[At]=[Ai]*e^(-kt)
with [At] = Concentration at time t
with [Ai] = initial concentration
with k = rate constant
with t = time
We want to know the half-life time = the time needed to have 50% of it's initial value
50 = 100 *e^(-8.7 *10^-3 s^- * t)
50/100 = e^(-8.7 *10^-3 s^-1 * t)
ln (0.5) = 8.7 *10^-3 s^-1 *t
t= ln (0.5) / -8.7 *10^-3 = 79.67 seconds
The half-life time, the team equired for a quantity to reduce to half of its initial value, is 79.67 seconds.