***(2x²+6x-8):(x+5)=2x-4
-2x²-10x
⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻
-4x-8
4x+20
⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻
12 ⇒ A. statement is true.
***When x=-5⇒2*(-5)²+6*(-5)-8=12⇒B. statement is true.
***2x²+6x-8 can also be written as (x+5)*(2x-4)+12 so (x+5) is a factor of 2x²+6x-8⇒C. statement is true.
***When x=5⇒2*5²+6*5-8=72 is not 12⇒D. statement is not true
***(2x²+6x-8):(x+5)=2x+16
-2x²+10x
⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻
16x-8
-16x+80
⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻⁻
72⇒F. statement is not true
***E. statement is not true.
Answer:
y-intercept- (0,-5)
x-intercept (
1
,
0
)
,
(
−
,0)
Step-by-step explanation:
y-intercept- (0,-5)
x-intercept (
1
,
0
)
,
(
−
,0)
![\bf \begin{cases} f(x)=\cfrac{2}{x}\\[1em] g(x)=x^2+9 \end{cases}~\hspace{5em}f(~~g(x)~~)=\cfrac{2}{g(x)}\implies f(~~g(x)~~)=\cfrac{2}{x^2+9}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20f%28x%29%3D%5Ccfrac%7B2%7D%7Bx%7D%5C%5C%5B1em%5D%20g%28x%29%3Dx%5E2%2B9%20%5Cend%7Bcases%7D~%5Chspace%7B5em%7Df%28~~g%28x%29~~%29%3D%5Ccfrac%7B2%7D%7Bg%28x%29%7D%5Cimplies%20f%28~~g%28x%29~~%29%3D%5Ccfrac%7B2%7D%7Bx%5E2%2B9%7D)
that's one combination for f(x) and g(x), off many combinations.
Im almost positive the answer is D.
Answer:
n-3≥-5
If you need the equation solved...
n-3≥-5
<u>+3 +3</u>
n≥-2
Hope this helped!! Have a great day c: