Answer:
Step-by-step explanation:
f * g = (x^2 + 3x - 4) (x+4)
open bracket
x((x^2 + 3x - 4) + 4 (x^2 + 3x - 4)
x³ +3x²-4x+x²+12x-16
x³+3x²+x²-4x+12x-16
x³+4x²+8x-16 (domain is all real numbers.
f/g = (x^2 + 3x - 4)/(x+4)
factorising (x^2 + 3x - 4)
x²+4x-x_4
x(x+4) -1 (x+4)
(x+4)(x-1)
f/g = (x^2 + 3x - 4)/(x+4) =(x+4)(x-1)/(x+4) = (x-1)
Before factorisation, this was a rational function so the domain is all real numbers excluding any value that would make the denominator equal zero.
Hence I got x - 1, and x cannot equal -4
So the domain is just all real numbers without -4
Answer:
k = 4
Step-by-step explanation:
Plug in the values of 2 for x and 0 for y, and solve for k.
2x + 3y = k
2(2) + 3(0) = k
4 = k
k = 4
The solution to the problem is as follows:
x = log (25) (125)
125 = 25^x
log 125 = x log 25
<span>
x = 3/2
</span>
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Answer: True
Think of a 3D box. It has 6 faces and the surface area is the total of all six individual rectangular faces. This idea applies to any polyhedron.
Answer:
(A) Set A is linearly independent and spans
. Set is a basis for
.
Step-by-Step Explanation
<u>Definition (Linear Independence)</u>
A set of vectors is said to be linearly independent if at least one of the vectors can be written as a linear combination of the others. The identity matrix is linearly independent.
<u>Definition (Span of a Set of Vectors)</u>
The Span of a set of vectors is the set of all linear combinations of the vectors.
<u>Definition (A Basis of a Subspace).</u>
A subset B of a vector space V is called a basis if: (1)B is linearly independent, and; (2) B is a spanning set of V.
Given the set of vectors
, we are to decide which of the given statements is true:
In Matrix
, the circled numbers are the pivots. There are 3 pivots in this case. By the theorem that The Row Rank=Column Rank of a Matrix, the column rank of A is 3. Thus there are 3 linearly independent columns of A and one linearly dependent column.
has a dimension of 3, thus any 3 linearly independent vectors will span it. We conclude thus that the columns of A spans
.
Therefore Set A is linearly independent and spans
. Thus it is basis for
.