1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
shtirl [24]
3 years ago
7

The ages of students in a community science club are 13,11,14,12,8 and 10 what is the range of ages in this club?

Mathematics
1 answer:
Verdich [7]3 years ago
5 0

Answer:

Range = 6

Step-by-step explanation:

Lets arrange the ages in order first:

8, 10, 11, 12, 13 , 14

The range is the highest value from the set of numbers MINUS the lowest value.

The arranged number tells us that the:

Highest Value = 14

Lowest Value = 8

Thus, we can say:

Range = highest - lowest = 14 - 8 = 6

Range = 6

You might be interested in
Need help on both of them
Vlad1618 [11]
7) Write the decimal number as a fraction
(over 1)
2.18 = 2.18 / 1

Multiplying by 1 to eliminate 3 decimal places
we multiply top and bottom by 3 10's

Numerator (N)
N = 2.18 × 10 × 10 × 10 = 2180
Denominator (D)
D = 1 × 10 × 10 × 10 = 1000

N / D = 2180 / 1000

Simplifying our fraction

= 2180/1000

= 109/50

= 2  9/50

8)7 ^{-5}  =  \frac{1}{7^{5}}
6 0
3 years ago
Implicit differentiation Please help
Anvisha [2.4K]

Answer:

y''(-1) =8

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Equality Properties

<u>Algebra I</u>

  • Factoring

<u>Calculus</u>

Implicit Differentiation

The derivative of a constant is equal to 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Product Rule: \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Chain Rule: \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Quotient Rule: \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

-xy - 2y = -4

Rate of change of the tangent line at point (-1, 4)

<u>Step 2: Differentiate Pt. 1</u>

<em>Find 1st Derivative</em>

  1. Implicit Differentiation [Product Rule/Basic Power Rule]:                            -y - xy' - 2y' = 0
  2. [Algebra] Isolate <em>y'</em> terms:                                                                               -xy' - 2y' = y
  3. [Algebra] Factor <em>y'</em>:                                                                                       y'(-x - 2) = y
  4. [Algebra] Isolate <em>y'</em>:                                                                                         y' = \frac{y}{-x-2}
  5. [Algebra] Rewrite:                                                                                           y' = \frac{-y}{x+2}

<u>Step 3: Find </u><em><u>y</u></em>

  1. Define equation:                    -xy - 2y = -4
  2. Factor <em>y</em>:                                 y(-x - 2) = -4
  3. Isolate <em>y</em>:                                 y = \frac{-4}{-x-2}
  4. Simplify:                                 y = \frac{4}{x+2}

<u>Step 4: Rewrite 1st Derivative</u>

  1. [Algebra] Substitute in <em>y</em>:                                                                               y' = \frac{-\frac{4}{x+2} }{x+2}
  2. [Algebra] Simplify:                                                                                         y' = \frac{-4}{(x+2)^2}

<u>Step 5: Differentiate Pt. 2</u>

<em>Find 2nd Derivative</em>

  1. Differentiate [Quotient Rule/Basic Power Rule]:                                          y'' = \frac{0(x+2)^2 - 8 \cdot 2(x + 2) \cdot 1}{[(x + 2)^2]^2}
  2. [Derivative] Simplify:                                                                                      y'' = \frac{8}{(x+2)^3}

<u>Step 6: Find Slope at Given Point</u>

  1. [Algebra] Substitute in <em>x</em>:                                                                               y''(-1) = \frac{8}{(-1+2)^3}
  2. [Algebra] Evaluate:                                                                                       y''(-1) =8
6 0
3 years ago
Read 2 more answers
Ten of 16 students in Nyack's class are girls. His teacher selected two
viktelen [127]

I can't understand this after "happening is" but let's do it unaided.

The number of ways to draw a boy first is 6.

Given that, the number of ways to draw a girl next is 10.

That's out of a total of 16 x 15 length two permutations of 16 things

p = \dfrac{6 \times 10}{16(15)} = 1/4

Answer: 1/4

7 0
3 years ago
Which of the following is an arithmetic sequence?
slamgirl [31]

b

Step-by-step explanation: i don know

5 0
3 years ago
Read 2 more answers
The area A(r)(in square meters) of a circular algae colony with radius r meters is given by A(r)=pir^2. Basically that's A(r)= p
Taya2010 [7]

Answer:

The expression provided by the area (square meters) is given by:  A(t) = pi \frac{100t^{2} }{9}.

Step-by-step explanation:

The area of the algae colony is a function of the radius r (meters), so A(r) = \pi r ^ 2.

The radius of the circle formed by the algae colony is a function of time t (in minutes), so M (t) = \frac{10t }{3}. So,

A(r) = \pi r ^ 2  [Substituting the expression for radius]

A(t) = pi (\frac{10t }{3})^{2} = pi \frac{100t^{2} }{9}

Then the expression provided by the area (square meters) is given by:  A(t) = pi \frac{100t^{2} }{9}.

7 0
3 years ago
Other questions:
  • 4. Extended response: 10 point rubric. Show all work.
    13·1 answer
  • One grain of sand weighs 0.0007g. How many grains of sand are in 6300kg. Leave your answer in standard form
    5·1 answer
  • Solving systems of equations y=-3x+4 and x=2y+6
    5·1 answer
  • 5x + 3 = 7x – 1. Find x<br><br> a. 1/3<br> b. ½<br> c. 1<br> d. 2
    5·1 answer
  • F(x) = -6x + 4<br> f (x) = 28
    11·1 answer
  • Evaluate 5 + 3x for (a) x= -2 and (b)x= 3. Write your answers in simplest form.
    10·2 answers
  • f(x) = x^2 – 3x +18 What is the value of the discriminant of f? How many distinct real number zeros does ſ have?​
    6·1 answer
  • Write an equation of the line that passes through (1, 2) and is perpendicular to the line y = -5x + 4
    15·1 answer
  • Write the point where the linear equation 3x + 4y = 12 cuts the x-axis.​
    7·2 answers
  • state domain and range, intercepts, relative max and relative mins points and values, intervals of increase and decrease, interv
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!