Answer:34
Step-by-step explanation:
Weight of Alex:44
Weight of Bob:44*(3/4)
=33
Combined weight of all of them:111
Combined weight of Alex and Bob=44+33=77
Cole's weight=111-77 =34

![\sf \left[\begin{array}{cc}\sf 4&\sf 6\\ \sf 5 &\sf 8 \\ \sf 3 &\sf -2\end{array}\right]-\left[\begin{array}{cc}\sf 2&\sf 3\\ \sf 1 &\sf 4 \\ \sf -5&\sf3\end{array}\right]](https://tex.z-dn.net/?f=%5Csf%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Csf%204%26%5Csf%206%5C%5C%20%5Csf%205%20%26%5Csf%208%20%5C%5C%20%5Csf%203%20%26%5Csf%20-2%5Cend%7Barray%7D%5Cright%5D-%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Csf%202%26%5Csf%203%5C%5C%20%5Csf%201%20%26%5Csf%204%20%5C%5C%20%5Csf%20-5%26%5Csf3%5Cend%7Barray%7D%5Cright%5D)
Just substract corresponding terms
![\\ \sf\longmapsto \left[\begin{array}{cc}\sf 2 &\sf 3\\ \sf 4&\sf4\\ \sf 8&\sf -5\end{array}\right]](https://tex.z-dn.net/?f=%5C%5C%20%5Csf%5Clongmapsto%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Csf%202%20%26%5Csf%203%5C%5C%20%5Csf%204%26%5Csf4%5C%5C%20%5Csf%208%26%5Csf%20-5%5Cend%7Barray%7D%5Cright%5D)
Option B
Answer:
400 times Greater
Step-by-step explanation:
8 x 10^4
10^4 = 10000
10000 x 8 = 80000
2 x 10^2
10^2 = 100
2 x 100 = 200
= 400
Answer:
4 hours
Step-by-step explanation:
25 * 8 = 200
so, 30 * 8 = 240(minutes)
240 / 60 = 4 hours
Hope it helps!
Mark brianliest if I'm right please!
Answer: 2√2 - 3Explanation:The expession written properly is:

To rationalize that kind of expressions, this is to eliminate the radicals on the denominator you use conjugate rationalization.
That is, you have to multiply both numerator and denominator times the conjugate of the denominator.
The conjugate of √3+√6 is √3 - √6, so let's do it:

To help you with the solution of that expression, I will show each part.
1) Numerator: (√3 - √6) . (√3 - √6) = (√3 - √6)^2 = (√3)^2 - 2√3√6 + (√6)^2 =
= 3 - 2√18 + 6 = 9 - 6√2.
2) Denominator: (√3 + √6).(√3 - √6) = (√3)^2 - (√6)^2 = 3 - 6 = - 3
3) Then the resulting expression is:
9 - 6√2
-----------
-3
Which can be further simplified, dividing by - 3
-3 + 2√2
Answer: 2√2 - 3