1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alina1380 [7]
3 years ago
11

Find the slope of the line going through (-3,5) and (7,-9)

Mathematics
2 answers:
Alchen [17]3 years ago
6 0
The slope of the line going through (-3,5) and (7, -9) is 7/5.

Slope Formula:

     y₂ - y₁          -9 - 5        -14        7
  ------------- = ------------ = ------- = ----
     x₂ - x₁         7 - (-3)        10        5

xenn [34]3 years ago
3 0
Gradient = Change of y/ Change of x
= 14/10
= 1.4
You might be interested in
Solve the proportion. s+1/4=4/8
Murrr4er [49]
<span>5*s-(4*s)-(1/2) = -1/4-(4/8) // + -1/4-(4/8)

5*s-(4*s)-(1/2)-(-1/4)+4/8 = 0

5*s-4*s-1/2+1/4+4/8 = 0

s+1/4 = 0 // - 1/4

s = -1/4

s = -1/4
</span>
5 0
3 years ago
Read 2 more answers
Mr. Huyck needs 8 gallons of punch for the school dance. How many<br> quarts of punch would he need?
koban [17]
32 bc eight times four equals 32
8 0
3 years ago
Read 2 more answers
Solve the system by substitution.<br> x−5y=−11<br> −6y=x
antoniya [11.8K]

Answer:

y=x,y=12x+1

y=4x+4,y=6x

y=x+1,y=x+4

Step-by-step explanation:

3 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%20%5C%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos2x%7D-%5Csqrt%5B3%5D%7Bcos3x%7D%20%7D%7
salantis [7]

Answer:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{1}{2}

General Formulas and Concepts:

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:                                                                     \displaystyle \lim_{x \to c} x = c

L'Hopital's Rule

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

We are given the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)}

When we directly plug in <em>x</em> = 0, we see that we would have an indeterminate form:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{0}{0}

This tells us we need to use L'Hoptial's Rule. Let's differentiate the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \displaystyle  \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)}

Plugging in <em>x</em> = 0 again, we would get:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \frac{0}{0}

Since we reached another indeterminate form, let's apply L'Hoptial's Rule again:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)}

Substitute in <em>x</em> = 0 once more:

\displaystyle \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)} = \frac{1}{2}

And we have our final answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

6 0
3 years ago
Please help!!!!!!!!!!!!!!
Vlad1618 [11]
What do you need specifically just that one question
5 0
3 years ago
Other questions:
  • Find the sum 7/8 + 2/4
    13·2 answers
  • Segment AB has endpoints on the coordinate grid where A is (- 18, 5) and B is (- 4, 5) Point Z is located exactly 1/8 of the dis
    11·1 answer
  • Choose and use two mathematical properties (the commutative property, combining like terms, or the distributive property) to cre
    5·1 answer
  • If SU= 2x - 12, find SU
    5·1 answer
  • 407 / 7 quotient and remainder
    12·1 answer
  • Will award brainliest
    10·1 answer
  • Pleasee helpp Which one??
    7·2 answers
  • Write an equation of the line passing through
    15·1 answer
  • Please help solve by elimination I hope its not blurry Have a nice day and Goodnight
    10·2 answers
  • You purchase 5 tickets to a football game from TicketMaster. In addition to the cost per ticket, the agency charges a convenienc
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!