Answer:
-3c
Step-by-step explanation:
The given expression is:

We need to simplify this expression. The rational expression in the denominator can be multiplied to numerator by taking its reciprocal as shown below:

Thus, the given expression in simplified form is equal to -3c
Answer:
Step-by-step explanation:
Given that:
The differential equation; 
The above equation can be better expressed as:

The pattern of the normalized differential equation can be represented as:
y'' + p(x)y' + q(x) y = 0
This implies that:



Also;


From p(x) and q(x); we will realize that the zeroes of (x+2)(x-2)² = ±2
When x = - 2






Hence, one (1) of them is non-analytical at x = 2.
Thus, x = 2 is an irregular singular point.
Answer:
1,800
Step-by-step explanation:
1,819
----^
1 is less than five so you round down even if you round the 19 to 20 it would still be needed to round down because it is less than 50.
Hope this helps, have a good day! :)
(Brainliest would be appreciated?)
Answer:
the third option
Step-by-step explanation:
what does that mean ?
to "rationalize" it is to transform it into a rational number (that is a number that can be described as a/b, and is not an endless sequence of digits after the decimal point without a repeating pattern).
a square root of a not square number is irrational (not rational).
so, what this question is asking us to get rid of the square root part in the denominator (the bottom part).
for this we need to multiply to and bottom with the same expression (to keep the whole value of the quotient the same) that, when multiplied at the bottom, eliminates the square root.
what can I multiply a square root with to eliminate the square root ? the square root again - we are squaring the square root.
so, what works for 9 - sqrt(14) as factor ?
we cannot just square this as
(9- sqrt(14))² = 81 -2sqrt(14) + 14
we still have the square root included.
but remember the little trick :
(a+b)(a-b) = a² - b²
without any mixed elements.
so, we need to multiply (9-sqrt(14)) by (9+sqrt(14)) to get
81-14 = 67 which is a rational number.
therefore, the third answer option is correct.