Answer: A. 3 x 3 x 3 x 4
Step-by-step explanation: 3 x 3 = 9 x 3 = 27 x 4 = 108
A) The longest horizontal distance is reached at 45 degrees angle. This is true for any projectile launch.
B) First, calculate fligth time (using the vertical motion) and then calculate the horizontal movement.
Flight time = 2* ascendent time
ascendent time => final vertical velocity, Vy, = 0
sin(45) = Voy / Vo => Voy = Vosin(45) = 25.5 m/s * (√2) / 2 = 18.03 m/s
Vy = Voy - gt = 0 => Voy = gt = t = Voy / g
Use g = 10 m/s^ (it is an aproximation, because the actual value is about 9.81 m/s^2 depending on the latitud)
t = 18.03 m/s / 10 m/s^2 = 1.83 s
This is the ascendant time going upward.
The flight time is 2*1.83 = 3.66 s
Horizontal motion
Horizontal velocity = Vx = constant = Vox = Vo*cos(45) = 18.03 m/s
Vx = x / t => x = Vx*t
Horizontal distance = xmax = 18.03m/s*3.66 s = 65.99 m
c) The time the ballon will be in the air was calculated in the part B, it is 18.03 s
Answer:




Solving for
we got
and replacing this we got:



And then the best option for this case would be:
b.csc x
Step-by-step explanation:
For this case we have the following expression given:

We know from math properties that the definition for cot is 
If we use this definition we got:


Now we can use the following identity:

Solving for
we got
and replacing this we got:



And then the best option for this case would be:
b.csc x
<h3>Isolate y on both equations then equate </h3>
- x²-3x+2y=-4
- 2y=-x²+3x-4
- y=-x²/2+3/2x-2
Now you can equate it with second one to get x
The answer for this question is 8/1