1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Blizzard [7]
3 years ago
7

Find the equation of the circle with center at the origin and x-intercepts 12 and -12

Mathematics
1 answer:
Troyanec [42]3 years ago
5 0
Since the radius is 12, the equation is
.. x^2 +y^2 = 144
You might be interested in
HELP 1 QUESTION!! IREADY!!! EXPLAIN!!
Anit [1.1K]
The linear equation (y = mx + b) for this particular line is d = 0.6t
it's the same as finding the equation for any line except they use d instead of y and t instead of x. The slope m is 0.6 and intercept is zero.
4 0
3 years ago
If $525 is 40% of my take home pay for 1 week how much to I make in a week
Vlada [557]

Answer: 525=2/5 so 1/5=262.5 and multiply that by 3 is 787.5 2/5 plus 3/5 is 100% so you would make 787.5

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
En una fiesta hay 40 asistentes de los cuales el número de varones que no bailan es el doble que el número de las mujeres que no
Arte-miy333 [17]

Answer:

50%

Step-by-step explanation:

Para resolver este problema vamos a definir 4 variables:

V= número de varones bailando.

M= número de mujeres bailando.

V' = número de varones que no están bailando.

M' = número de mujeres que no están bailando.

Sabemos que hay 40 personas en la fiesta, por lo que podemos construir la siguiente ecuación:

V+M+V'+M'=40

Vamos a suponer que cada mujer que está bailando, está bailando varón respectivamente. (El problema no da más información, entonces podemos suponer esto.)

Entonces si hay 5 mujeres bailando, entonces también hay 5 hombres bailando, por lo que nuestra ecuación se reescribe de la siguiente manera:

5+5+V'+M'=40

y simplificamos:

10+V'+M'=40

V'+M'=40-10

V'+M'=30

Ahora bien, el problem nos dice que el número de varones que no bailan es el doble del número de mujeres que no bailan en un determinado momento. Entonces con esta información podemos construir la siguiente ecuación:

V'=2M'

Y podemos despejar el número de mujeres que no bailan, lo que nos da:

M'=\frac{V'}{2}

Entonces podemos sustituir esto dentro de nuestra ecuación para obtener:

\frac{V'}{2}+V'=30

y podemos entonces despejar V'

\frac{3V'}{2}=30

V'=\frac{2(30)}{3}

V'=20

Entonces hay 20 varones que no están bailando, por lo que la probabilidad de que el varón que se escoge al azar no esté bailando está dada por la siguiente fórmula:

P=\frac{V'}{total}

P=\frac{20}{40}=\frac{1}{2}

P=50%

6 0
2 years ago
Determine whether each of these sets is finite, countably infinite, or uncountable. For those that are countably infinite, exhib
anzhelika [568]

Answer:

a) Countably infinite

b) Countably infinite

c) Finite

d) Uncountable

e) Countably infinite

Step-by-step explanation:

a) Let S the set of integers grater than 10.

Consider the following correspondence:

f: S\rightarrow \mathbb{Z}^+ defined by f(10+k)=k-1 for k\in\mathbb{Z}^+/\{0\}.

Let's see that the function is one-to-one.

Suppose that f(10+k)=f(10+j) for k≠j. Then k-1=j-1. Thus k-j=1-1=0. Then k=j. This implies that 10+k=10+j. Then the correspondence is injective.

b) Let S the set of odd negative integers

Consider the following correspondence:

f: S\rightarrow \mathbb{Z}^+ defined by f(-(2k+1))=k.

Let's see that the function is one-to-one.

Suppose that f(-(2k+1))=f(-(2j+1)) for k≠j. By definition, k=j. This implies that the correspondence is injective.

c) The integers with absolute value less than 1,000,000 are in the intervals A=(-1.000.000, 0) B=[0, 1.000.000). Then there is 998.000 integers in A that satisfies the condition and 999.000 integers in B that satifies the condition.

d) The set of real number between 0 and 2 is the interval (0,2) and you can prove that the interval (0,2) is equipotent to the reals. Then the set is uncountable.

e) Let S the set A×Z+ where A={2,3}

Consider the following correspondence:

f: S\rightarrow \mathbb{Z}^+ defined by f(2,k)=2k, \;f(3,j)= 2j+1

Let's see that the function is one-to-one.

Consider three cases:

1. f(2,k)=f(2,j), then 2k=2j, thus k=j.

2. f(3,k)=f(3,j), then 2k+1=2j+1, then 2k=2j, thus k=j.

3.  f(2,k)=f(3,j), then 2k=2j+1. But this is impossible because 2k is an even number and 2j+1 is an odd number.

Then we conclude that the correspondence is one-to-one.

6 0
3 years ago
Consider the number √25. Is it rational or irrational? Explain your reasoning.
taurus [48]
It is rational because the square root of 25 is 5.
3 0
3 years ago
Read 2 more answers
Other questions:
  • I’m confused on this one
    9·1 answer
  • Randomly take 4 cards from a deck of 52 cards, find the probability that the 4 cards are all aces
    9·1 answer
  • Please help as soon as possible
    11·2 answers
  • What is the measure of angle x?<br><br><br> 88º<br><br> 130º<br><br> 42º<br><br> 142º
    9·2 answers
  • How to solve 7+(-15)+12
    7·2 answers
  • choose the equation below that represents the line passing through the point (2,-4) with a slope of 1/2
    7·1 answer
  • The specifications for the diameter of a molded part are 10 mm ± 0.5 mm. The actual average and standard deviation from 250 part
    7·1 answer
  • Which of the following equations is an example of direct variation?
    11·1 answer
  • What's y=-4+15 in standard form
    14·1 answer
  • A six sided die is rolled and a coin is tossed. Find P(odd and T).
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!