Answer:
22
Step-by-step explanation:
-4(-5)+2
20+2
22
Answer:
a solution is 1/2 *tan⁻¹ (2*y) = - tan⁻¹ (x²) + π/4
Step-by-step explanation:
for the equation
(1 + x⁴) dy + x*(1 + 4y²) dx = 0
(1 + x⁴) dy = - x*(1 + 4y²) dx
[1/(1 + 4y²)] dy = [-x/(1 + x⁴)] dx
∫[1/(1 + 4y²)] dy = ∫[-x/(1 + x⁴)] dx
now to solve each integral
I₁= ∫[1/(1 + 4y²)] dy = 1/2 *tan⁻¹ (2*y) + C₁
I₂= ∫[-x/(1 + x⁴)] dx
for u= x² → du=x*dx
I₂= ∫[-x/(1 + x⁴)] dx = -∫[1/(1 + u² )] du = - tan⁻¹ (u) +C₂ = - tan⁻¹ (x²) +C₂
then
1/2 *tan⁻¹ (2*y) = - tan⁻¹ (x²) +C
for y(x=1) = 0
1/2 *tan⁻¹ (2*0) = - tan⁻¹ (1²) +C
since tan⁻¹ (1²) for π/4+ π*N and tan⁻¹ (0) for π*N , we will choose for simplicity N=0 . hen an explicit solution would be
1/2 * 0 = - π/4 + C
C= π/4
therefore
1/2 *tan⁻¹ (2*y) = - tan⁻¹ (x²) + π/4
Answer:
853,125
Step-by-step explanation:
Umhhh u can use a calculator… or write it down and slowly break down solve it like that.
Hope this helps, good luck! ;)