1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anton [14]
3 years ago
7

Set up the integral that represents the arc length of the curve f(x) = ln(x) + 5 on [1, 3], and then use Simpson's Rule with n =

4 to approximate the arc length. Then compare the approximation to the actual arc length found by integrating with technology.
Mathematics
1 answer:
marta [7]3 years ago
8 0

Answer:

The integral for the arc of length is:

\displaystyle\int_1^3\sqrt{1+\frac{1}{x^2}}dx

By using Simpon’s rule we get: 1.5355453

And using technology we get:  2.3020

The approximation is about 33% smaller than the exact result.

Explanation:

The formula for the length of arc of the function f(x) in the interval [a,b] is:

\displaystyle\int_a^b \sqrt{1+[f'(x)]^2}dx

We need the derivative of the function:

f'(x)=\frac{1}{x}

And we need it squared:

[f'(x)]^2=\frac{1}{x^2}

Then the integral is:

\displaystyle\int_1^3\sqrt{1+\frac{1}{x^2}}dx

Now, the Simposn’s rule with n=4 is:

\displaystyle\int_a^b g(x)}dx\approx\frac{\Delta x}{3}\left( g(a)+4g(a+\Delta x)+2g(a+2\Delta x) +4g(a+3\Delta x)+g(b) \right)

In this problem:

a=1,b=3,n=4, \displaystyle\Delta x=\frac{b-a}{n}=\frac{2}{4}=\frac{1}{2},g(x)= \sqrt{1+\frac{1}{x^2}}

So, the Simposn’s rule formula becomes:

\displaystyle\int_1^3\sqrt{1+\frac{1}{x^2}}dx\\\approx \frac{\frac{1}{3}}{3}\left( \sqrt{1+\frac{1}{1^2}} +4\sqrt{1+\frac{1}{\left(1+\frac{1}{2}\right)^2}} +2\sqrt{1+\frac{1}{\left(1+\frac{2}{2}\right)^2}} +4\sqrt{1+\frac{1}{\left(1+\frac{3}{2}\right)^2}} +\sqrt{1+\frac{1}{3^2}} \right)

Then simplifying a bit:

\displaystyle\int_1^3\sqrt{1+\frac{1}{x^2}}dx \approx \frac{1}{9}\left( \sqrt{1+\frac{1}{1^2}} +4\sqrt{1+\frac{1}{\left(\frac{3}{2}\right)^2}} +2\sqrt{1+\frac{1}{\left(2\right)^2}} +4\sqrt{1+\frac{1}{\left(\frac{5}{2}\right)^2}} +\sqrt{1+\frac{1}{3^2}} \right)

Then we just do those computations and we finally get the approximation via Simposn's rule:

\displaystyle\int_1^3\sqrt{1+\frac{1}{x^2}}dx\approx 1.5355453

While when we do the integral by using technology we get: 2.3020.

The approximation with Simpon’s rule is close but about 33% smaller:

\displaystyle\frac{2.3020-1.5355453}{2.3020}\cdot100\%\approx 33\%

You might be interested in
3.) a + 40 = 0 What is the value of a?<br> a =
Rus_ich [418]

Answer:

a= -40

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Michelle draws a card from a standard deck of 52 cards. She replaces the card and draws a second card. What is the probability t
erma4kov [3.2K]
To draw a heart, one would be choosing 1 card of 13 possible hearts, and 0 from the remaining 39 non-hearts. With respect to the entire deck, one would be choosing 1 card from 52 total cards. So the probability of drawing a heart is

\dfrac{\dbinom{13}1\cdot\dbinom{39}0}{\dbinom{52}1}=\dfrac{13\cdot1}{52}=\dfrac14

When Michelle replaces the card, the deck returns the normal, so the probability of drawing any card from a given suit is the same, \dfrac14. In other words, drawing a spade is independent of having drawn the heart first.

So the probability of drawing a heart, replacing it, then drawing a spade is \dfrac14\cdot\dfrac14=\dfrac1{16}.
4 0
3 years ago
Read 2 more answers
HELP PLEASE and show work
larisa86 [58]

Answer:

\boxed{\stackrel{\Large\frown}{PQS}\:= 222°}

Explanation:

Since \overline{PR} is a diameter, arc \stackrel{\Large\frown}{PQR}\:= 180°.

Given that \angle{SUR} = 42° is a subtended central angle by two diameters,

\stackrel{\large\frown}{RS} \:= 42°.

Using the rule of arcs, \stackrel{\Large\frown}{PQR} + \stackrel{\large\frown}{RS} \: = \: \stackrel{\Large\frown}{PQS} →

180° + \: 42° = \: \stackrel{\Large\frown}{PQS}

222° = \: \stackrel{\Large\frown}{PQS}

\stackrel{\Large\frown}{PQS} \: = \: 222°

3 0
3 years ago
Suppose y varies directly as x, and y=14 when x=4. What is the value of y when x=9
Katena32 [7]

Given :-

  • y varies directly as x, and y=14 when x=4.

To Find :-

  • the value of y when x=9 .

Solution :-

<u>A</u><u>c</u><u>c</u><u>o</u><u>r</u><u>d</u><u>i</u><u>n</u><u>g</u><u> </u><u>t</u><u>o</u><u> </u><u>Q</u><u>u</u><u>e</u><u>s</u><u>t</u><u>i</u><u>o</u><u>n</u><u> </u><u>,</u>

  • y = kx ( k is constant )

<u>When</u><u> </u><u>y</u><u> </u><u>=</u><u> </u><u>1</u><u>4</u><u> </u><u>a</u><u>n</u><u>d</u><u> </u><u>x</u><u> </u><u>=</u><u> </u><u>4</u><u> </u><u>,</u>

  • 14 = k(4)
  • k = 14/4
  • k = 7/2

<u>W</u><u>h</u><u>e</u><u>n</u><u> </u><u>x</u><u> </u><u>=</u><u> </u><u>9</u><u> </u><u>,</u>

  • y = 7/2*9
  • y = 63/2
  • y = 31.5
8 0
2 years ago
What is the y-intercept of this equation?<br> y= 2/9x +13
Ksju [112]

Answer:

13

Step-by-step explanation:

y=mx+b

b= y-intercept

5 0
3 years ago
Read 2 more answers
Other questions:
  • Find the first,fourth,and eighth term of the sequence A(n)=-3x2 ^n-1
    13·1 answer
  • Help please solve for x.
    15·1 answer
  • What is the range of this function(–11, 8) (13, 7) (14, 7)
    12·1 answer
  • Which triangles are similar?
    14·1 answer
  • The sum of two numbers is 44, and the larger number is 2 more than the smaller number. What is the smaller number?
    7·1 answer
  • Graph the system of inequalities presented here on your own paper, then use your graph to answer the following questions:
    7·1 answer
  • Please help me!?!?! I dont understand ​
    11·2 answers
  • Part F – Model, solve, and interpret the word problem
    6·1 answer
  • • Un automóvil parte de 0 m/s y aumenta su velocidad a 60 m/s en 15 segundos. ¿Cuál es su aceleración?
    9·1 answer
  • Find 136.7% of 301. Round to the nearest hundredth.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!