Answer:
The virus will transfer the DNA encoding cholera toxin to the next bacteria it infects, which will make that bacteria cholera-causing.
Explanation:
The process described in this question is a kind of gene transfer in bacteria called TRANSDUCTION. Transduction is the transfer of fragments of DNA from one bacterium to another via a virus called bacteriophage.
As stated in this question, the virus (bacteriophage) infects a cholera-causing bacterium. The bacteriophage moves from lysogenic cycle to lytic cycle and includes some pieces of the bacterial DNA, which encodes information for making the cholera toxin, in its own genome.
This means that the cholera-making toxin DNA is now a part of the virus's genome and hence, will transfer it to the next bacteria it infects in a process called TRANSDUCTION. This will make that bacteria a cholera causing bacteria.
The answer is A. An ionic bond transfers, in contrast a covalent bond shares
Answer:
The correct answer would be Light independent reactions require the energy gathered in the thylakoids.
Photosynthesis can divided into two sub-processes or reactions:
Light-dependent reaction: It converts solar energy into chemical energy that is, ATP (adenosine triphosphate) and NADPH with the help of photolysisis of water. It takes place in thyllakoid membrane of the chloroplast.
Light-independent reaction: It fixes carbon obtained from carbon dioxide into the food or glucose with the help of enzyme RuBisCO (Ribulose-1,5-bisphosphate carboxylase/oxygenase).
It takes place in the stroma of the chloroplast and does not require the involvement of light however, it requires the products (ATP and NADPH) of the light reaction.
Fixation of 1 molecule of glucose requires 6 molecules of carbon dioxide, 9 molecules of ATP and 6 molecules of NADPH.
So, darkness indirectly affects the light-independent reaction.