Answer:
The correct answer is b.
Explanation:
The quantum number n specifies the energetic level of the orbital, the first level being the one with the least energy. As n increases, the probability of finding the electron near the nucleus decreases and the orbital energy increases.
In the case of atoms with more than one electron, the quantum number l also determines the sublevel of energy in which an orbital is found, within a certain energy level. The value of l is designated by the letters s, p, d, and f.
Have a nice day!
Answer:
The answer to your question is: 6.55 x 10 ²³ atoms of Br
Explanation:
CH2Br2 = 37.9 g
MW CH2Br2 = (12 x 1) + (2 x 1) + (80 x 2) = 174 g
174 g of CH2Br2 ------------------ 160 g of Br2
37.9 g of CH2Br2 --------------- x
x = 37.9 x 160/174 = 34.85 g of Br
1 mol of Br ----------------- 160 g Br2
x ---------------- 174 g Be2
x = 174 x 1 /160 = 1.088 mol of Br2
1 mol of Br ----------------- 6.023 x 10 ²³ atoms
1.088 mol of Br ------------- x
x = 1.088 x 6.023 x 10 ²³ / 1 = 6.55 x 10 ²³ atoms
Answer:
Hypsochromic compound, More polar solvent
Explanation:
Hypsochromic shift refers to the shift of solution colour to blue side of the visible spectrum (blueshift) with increasing polarity of the solvent. In our case, the solution changes to orange colour from red when solvent is changed. This means that the emission spectrum of the solution underwent blueshift. (As orange colour is on the 'blue' side for red colour.) So this is a hypsochromic shift, and the new solvent is more polar that the previous one, as it caused hypsochromic shift.
Answer:
392.97 litres
Explanation:
From the equation of reaction, we can see that 1 mole of methane yielded 1 mole of carbon iv oxide. Hence, 15.9 moles of methane will yield 15.9 moles of carbon iv oxide.
At s.t.p one mole of a gas occupies a volume of 22.4L ,hence 15.9 moles of a gas will occupy a volume of 22.4 × 15.9 which equals
356.16L.
Now, we can use the general gas equation to get the volume produced at the values given.
We have the following values;
V1 = 356.16L P1= 1 atm ( standard pressure) T1 = 273K ( standard temperature) V2 = ? T2 = 23.7 + 273 = 296.7K P2 = 0.985 atm
The general form of the general gas equation is given as :
(P1V1)T1 = (P2V2)/T2
After substituting the values , we get V2 to be 392.97Litres