Answer:
20.6
Step-by-step explanation:
Given data
J(-1, 5)
K(4, 5), and
L(4, -2)
Required
The perimeter of the traingle
Let us find the distance between the vertices
J(-1, 5) amd
K(4, 5)
The expression for the distance between two coordinates is given as
d=√((x_2-x_1)²+(y_2-y_1)²)
substitute
d=√((4+1)²+(5-5)²)
d=√5²
d= √25
d= 5
Let us find the distance between the vertices
K(4, 5), and
L(4, -2)
The expression for the distance between two coordinates is given as
d=√((x_2-x_1)²+(y_2-y_1)²)
substitute
d=√((4-4)²+(-2-5)²)
d=√-7²
d= √49
d= 7
Let us find the distance between the vertices
L(4, -2) and
J(-1, 5)
The expression for the distance between two coordinates is given as
d=√((x_2-x_1)²+(y_2-y_1)²)
substitute
d=√((-1-4)²+(5+2)²)
d=√-5²+7²
d= √25+49
d= √74
d=8.6
Hence the total length of the triangle is
=5+7+8.6
=20.6
According to my calculations it should be 77
Slope intercept form is to leave y by itself. ok this is the initial question 3x+4y=5 and we want y by itself. first subtract 3x by both sides. you now have 4y=5-3x, then divide 4 by both sides. y=5-3x/4, this is slope intercept form, if you still need help download the app socratic and photomath.
2/21, 16/28
Multiply by 2,3,4