The length of a curve <em>C</em> parameterized by a vector function <em>r</em><em>(t)</em> = <em>x(t)</em> i + <em>y(t)</em> j over an interval <em>a</em> ≤ <em>t</em> ≤ <em>b</em> is

In this case, we have
<em>x(t)</em> = exp(<em>t</em> ) + exp(-<em>t</em> ) ==> d<em>x</em>/d<em>t</em> = exp(<em>t</em> ) - exp(-<em>t</em> )
<em>y(t)</em> = 5 - 2<em>t</em> ==> d<em>y</em>/d<em>t</em> = -2
and [<em>a</em>, <em>b</em>] = [0, 2]. The length of the curve is then





Answer:
B. 48
Step-by-step explanation:
Multiply all the numbers of choices together.
trim levels: 3
colors: 4
interior: 4
number of combinations = 3 * 4 * 4 = 48
Answer:
117.5
Step-by-step explanation:
y= 3.5x + 30, where x = his number of toys sold
y= 3.5(25) + 30
y= 117.5
Answer:
The number of once is 9.1
The number of hundreds is 8.9
Step-by-step explanation:
Given as :
The total of digits having ones and hundreds = 900
The sum of digits = 18
Let The number of ones digit = O
And The number of hundreds digit = H
So, According to question
H + O = 18 .........1
100 × H + 1 × O = 900 ........2
Solving the equation
( 100 × H - H ) + ( O - O ) = 900 - 18
Or, 99 H + 0 = 882
Or , 99 H = 882
∴ H = 
I.e H = 8.9
Put the value of H in eq 1
So, O = 18 - H
I.e O = 18 - 8.9
∴ O = 9.1
So, number of once = 9.1
number of hundreds = 8.9
Hence The number of once is 9.1 and The number of hundreds is 8.9
Answer
Answer:
3. 
2<em>C.</em> 
2<em>B.</em> 
2<em>A.</em> 
1. ![\displaystyle Set-Builder\:Notation: [x|7, 0 ≠ x] \\ Interval\:Notation: (-∞, 0) ∪ (0, 7) ∪ (7, ∞)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20Set-Builder%5C%3ANotation%3A%20%5Bx%7C7%2C%200%20%E2%89%A0%20x%5D%20%5C%5C%20Interval%5C%3ANotation%3A%20%28-%E2%88%9E%2C%200%29%20%E2%88%AA%20%280%2C%207%29%20%E2%88%AA%20%287%2C%20%E2%88%9E%29)
Step-by-step explanation:
3. <em>See</em><em> </em><em>above</em>.
2<em>C</em>. The keyword is ratio, which signifies division, so you would choose "III.".
2<em>B</em>. The keyword is percent, which signifies multiplication of a ratio by 100, so you would choose "I.".
2<em>A</em>. The keyword is total, which signifies addition, so you would choose "II.".
1. Base this off of the denominator. Knowing that the denominator CANNOT be zero, you will get this:
![\displaystyle x^2 - 7x \\ x[x - 7] = 0; 7, 0 = x \\ \\ Set-Builder\:Notation: [x|7, 0 ≠ x] \\ Interval\:Notation: (-∞, 0) ∪ (0, 7) ∪ (7, ∞)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%5E2%20-%207x%20%5C%5C%20x%5Bx%20-%207%5D%20%3D%200%3B%207%2C%200%20%3D%20x%20%5C%5C%20%5C%5C%20Set-Builder%5C%3ANotation%3A%20%5Bx%7C7%2C%200%20%E2%89%A0%20x%5D%20%5C%5C%20Interval%5C%3ANotation%3A%20%28-%E2%88%9E%2C%200%29%20%E2%88%AA%20%280%2C%207%29%20%E2%88%AA%20%287%2C%20%E2%88%9E%29)
I am joyous to assist you anytime.