The distribution function of the univariate random variable x is continuous at x if and only if , F (x) = P (X ≤ x)
Continuous univariate statistical distributions are functions that describe the likelihood that a random variable, say, X, falls within a given range. Let P (a Xb) represent the probability that X falls within the range [a, b].
A numerically valued variable is said to be continuous if, in any unit of measurement, whenever it can take on the values a and b. If the random variable X can assume an infinite and uncountable set of values, it is said to be a continuous random variable.
If X can take any specific value on the real line, the probability of any specific value is effectively zero (because we'd have a=b, which means no range). As a result, continuous probability distributions are frequently described in terms of their cumulative distribution function, F(x).
To learn more about univariated data
brainly.com/question/13415579
#SPJ4
Answer:
Speed of turtle = 11.25 miles/hour
Step-by-step explanation:
1 7/8 miles / 1/6 hour
= 15/8 / 1/6
= 15/8 * 6
= 11.25 miles/hour
Answer:
The answer to the equation from question 7 is 14.
Step-by-step explanation:
In question 7, we are given an equation.
2³ + (8 - 5)² - 3
First, subtract 5 from 8 in the parentheses.
2³ + 3² - 3
Next, solve the exponents for 2³ and 3².
8 + 9 - 3
Add 8 to 9.
17 - 3
Subtract 3 from 17.
14
So, the answer to this equation from question 7 is 14.