The limit of the given function if
is 64
<h3>Limit of a function</h3>
Given the following limit of a function expressed as;

We are to determine the value of the function
![\frac{1}{4} \lim_{x \to 0} [f(x)]^4](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%7D%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Bf%28x%29%5D%5E4)
This can also be expressed as
![\frac{1}{4} \lim_{x \to 0} [f(x)]^4\\ = \frac{1}{4}(4)^4 \\=1/4\times 256\\=64](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B4%7D%20%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Bf%28x%29%5D%5E4%5C%5C%20%3D%20%5Cfrac%7B1%7D%7B4%7D%284%29%5E4%20%5C%5C%3D1%2F4%5Ctimes%20256%5C%5C%3D64)
Hence the limit of the given function if
is 64
Learn more on limit of a function here: brainly.com/question/23935467
#SPJ1
12x+2=17y
12x+2=17(0)
12x+2=0
-2 -2
——
12x+0= -2
— —
12 12
x= -2/12
X= -1/6
Answer:
B. √3
Step-by-step explanation:
Edge 2021
Answer:
B
Step-by-step explanation:
Given
y² - 12y + 32
Consider the factors of the constant term (+ 32) which sum to give the coefficient of the y- term (- 12)
The factors are - 4 and - 8, since
- 4 × - 8 = 32 and - 4 - 8 = - 12, thus
y² - 12y + 32 = (y - 4)(y - 8) → B
5^x = 5^6
x = 6
hope it helps