The answer is polygenic inheritance.
Many physical characters (traits) depend on many different factors, each of which is determined by different genes. This is called polygenic inheritance.
For example, the color of the skin in humans. The color of the skin results from the interactions of several factors determined by different pairs of genes:-Certain genes could affect the metabolism of skin melanocytes.-Other genes can determine the distribution of melanin in the thickness of the skin.-Some genes could determine the relative amounts of each of the two possible types of melanin.-Others may affect the production of certain hormones involved in the activity of melanocytes.
Answer:
Obtain a immunization before flu season begins
Explanation:
The question asks for prevention and the other answers sTate what to do when you already have it.
The answer is d) organic chemistry
Answer:
The nitrogenous bases guanine and adenine are A. purines.
Explanation:
Adenine and guanine are purines, whereas the other two bases in DNA (thymine and cytosine) are pyrimidines. The main difference between purines and pyrimidines is the number of rings that the base has: purines have two rings while pyrimidines only have one ring.
In addition, phosphate group and sugar group cannot be the answer to this question because these two elements in addition to a nitrogenous base makes up a nucleotide.
Hope this helps!
Answer:
Normal Strand: alanine - methionine - histidine
Mutated Strand: glutamine - cysteine - no third amino acid.
Explanation:
<h3>mRNA Structure</h3>
Messenger ribonucleic acid (mRNA) is the RNA that is used in cells for protein synthesis. It has a single strand made by the transcription of DNA by RNA polymerase. It contains four nucleotides: Adenine (A), Guanine (G), Cytosine (C), and Uracil (U).
<h3>DNA Replication</h3>
Before transcribing, we need to create the complementary strand of the DNA. We're going to write out the nucleotides of the complementary strand by matching the nucleotides in these pairs: (A & T) and (C & G).
Normal Strand: GCA ATG CAC
Complementary Strand: CGT TAC GTG
Next, we can transcribe this to find our mRNA. We're going to do the same thing to the complementary DNA strand, but with Uracils instead of Thymines. So our pairs are: (A & U) and (C & G)
Complementary DNA Strand: CGT TAC GTG
mRNA Strand: GCA AUG CAC
You'll notice that the mRNA strand is almost exactly like the new mRNA strand, but with Uracil instead of Thymine.
<h3>Reading Codons</h3>
Each set of three nucleotides is known as a codon, which encodes the amino acids that ribosomes make into proteins. To read the codons, you need to have a chart like the one I attached. Start in the middle and work your way to the edge of the circle. Some amino acids have multiple codons. There are also "stop" and "start" codons that signify the beginning and ends of proteins.
mRNA Strand: GCA AUG CAC
Amino Acids: Ala Met His
Our sequence is alanine, methionine, and histidine.
<h3>Frameshift Mutations</h3>
A frameshift mutation occurs when a nucleotide is either added or removed from the DNA. It causes your reading frame to shift and will mess up every codon past where the mutation was. This is different than a point mutation, where a nucleotide is <em>swapped</em> because that will only mess up the one codon that it happened in. Frameshift mutations are usually more detrimental than point mutations because they cause wider spread damage.
<h3>Mutated Strand</h3>
Let's repeat what we did earlier on the mutated strand to see what changed.
Mutated Strand: CAA TGC AC
Complementary Strand: GTT ACG TG
---
Complementary DNA Strand: GTT ACG TG
mRNA Strand: CAA UGC AC
---
mRNA Strand: CAA UGC AC
Amino Acids: Glu Cys X
---
Our amino acid sequence is glutamine, cysteine, and no third amino acid.
As you can see, removing the first nucleotide of the strand caused every codon to change. The last codon is now incomplete and won't be read at all. If this happened in a cell, the protein that was created from this mutated strand would be incorrect and may not function completely or at all.