Answer:
Net membrane potential is equal to the difference of positive charge and negative charge existing at the inner and outer side of the cell respectively. Since outer negative charge is higher in concentration, the net membrane potential is negative
Explanation:
The cell membrane potential defined as the net difference of ion concentration existing at the inner and outer side of a cell membrane at nay instance.
When the cell is at the resting potential, the positive potassium ion starts accumulating at the inner surface of the cell membrane as it becomes favors positive potassium ion. This leads to development of negative potential at the outer side of cell membrane by the accumulation of negative ions or charges. Hence, a net negative potential membrane develops.
The
intensity range would be 60-80%.
A high
resting heart rate is indicative of an inefficient heart or possible arrhythmia.
Physical activity assessments should begin after the client has been screened
and resting measurements have been assessed. Moderate intensity exercise uses energy 3 - 6
times that of resting metabolism, which equates to 3 -6 METs.
Answer:
The daughter cells will each produce offspring that will have the same genetic information as the original cell.
Explanation:
The diagram you were given is shown in the image attached below. The options you were given are the following:
- The daughter cells will pass on only half of the genetic information they received from the original cell.
- The daughter cells will each produce offspring that will have the same genetic information as the original cell.
- The daughter cells will each undergo the same mutations as the original cell after reproduction has occurred.
- The daughter cells will not pass on any of the genes that they received from the original cell.
The diagram shows what cell division looks like. Cell division is the process in which we get two daughter cells from one parent cell. When a cell divides, everything in it divides as well. This is how daughter cells end up with the same structure (e.g. same organelles) as their parent cell.
The daughter cells have the same genetic information as their parent cell. This means that the cells produced by these daughter cells will have the same genetic information as the original parent cell.
<span>Yes, both prokaryotes and eukaryotes have liquid cytoplasm in their construction. To the best of my knowledge, AT LEAST MOST viruses do as well, if not all. However, their cell structures are relatively primitive and their cytoplasm is viscous and granular.</span>