Answer:
Explanation:
250 cm^3 of 0.2 moldm-3 H2SO4 can be prepared from 150cm^3 of 1.0 moldm^-3 by dilution.
150cm^3 of the 1.0 moldm^-3 stock solution is measured out using a measuring cylinder and transferred into a 250 cm^3 standard volumetric flask and made up to mark. The resulting solution is now 250cm^3 of 0.2 moldm-3 H2SO4.
The temperature of a certain substance can be seen as the average speed of the atoms or molecules in that substance. In the liquid state of a substance the forces between the atoms or molecules are strong enough to keep them together, however with enough freedom to move, unlike in the solid state. If we would have a closer look at the surface of a liquid from sideways, we would see water molecules jumping out of the water and reentering it again. The lower the water temperature would be the lesser the amount of water molecules leaving the liquid phase would be. If water would be heated up and the temperature will reach 100 degrees C at normal atmospheric pressure, more water molecules would leave the water than reentering. Boiling has started. The temperature of the water remains at 100 degrees C, if the heating continues as the average speed of molecules will not increase, only the rate of molecules leaving the water will increase, until all the water in liquid state has been vapourized. The amount of heat needed to vapourize liquid water is called latent heat. Latent heat is a very important driving factor in the atmosphere and thus the weather.
Answer: option B. 0.59
Explanation:Please see attachment for explanation
Answer:
None are empirical formulas
Explanation:
All are actual compounds. An example of an empirical formula could be CH2O, the empirical formula for carbohydrates like glucose (C6H12O6).
Answer:
Giá trị xà phòng hóa hoặc số xà phòng hóa (SV hoặc SN) biểu thị số miligam kali hydroxit (KOH) hoặc natri hydroxit (NaOH)