Answer:
The correct order of increasing reactivity toward nucleophilic acyl substitution is E < D < C < A < F < B.
Explanation:
The stability of the leaving group best determines the manner of reactivity of carboxylates to nucleophilic substitution after the substitution of the nucleophile to the leaving group. The leaving group should, therefore, be protonated with hydrogen ion in the solution to form a stable molecule. From the given list: The leaving group for A, Ethyl thioacetate will be ethanethiol. For B, Acetyl chloride will be Hydrochloric acid. For C, Sodium acetate will be Sodium Hydroxide. For D, Ethyl acetate will be Ethanol. For E, Acetamide will be Ammonia, and for F, Acetic anhydride will be Ethanoic acid. The reactivity of the substitution reaction is dependent on the stability of these leaving groups. The stability of these leaving groups depends on their pKa, and the more the pKa, the lesser the acidity of the leaving group, and the lower the reactivity. Therefore, considering their pKa: A is 8.5, B is -7, C is 13.8, D is 15.9, E is 36, and F is 4.8. When we rearrange this pKa in descending order, we have E, D. C, A, F, B. Which is also the increased reactivity of the nucleophilic acyl substitution.
Answer:
P2 = 900 mmHg.
Explanation:
Given the following data;
Initial pressure = 450 mmHg
Initial temperature = 100°C
Final temperature = 200°C
To find the final pressure, we would use Gay Lussac's law;
Gay Lussac states that when the volume of an ideal gas is kept constant, the pressure of the gas is directly proportional to the absolute temperature of the gas.
Mathematically, Gay Lussac's law is given by;

Making P2 as the subject formula, we have;


Final pressure, P2 = 900 mmHg.
Hydrogen maybe but I don’t know for sure
This would not be a good idea because bacteria is everywhere and function as a part of out everyday lives. Starting off with animals, many animals rely on bacteria to digest their food so many animals would begin to die off. Ecosystems would fail due to nitrogen not being able to cycle.
Without bacteria biological waste would build up causing a drop in population, eventually going extinct.
Basically, the balance of nature between humans, animals, and plants would no longer exist.