Explanation:
During glycolysis, enzymes act on the substrate, glucose. Glycolysis occurs in the cytoplasm; here, 2 molecules of ATP are used to cleave glucose into 2 pyruvates, 4 ATP and 2 electron carrying NADH molecules.
Further Explanation:
In all eukaryotic cells mitochondria are small cellular organelles bound by membranes, these make most of the chemical energy required for powering the biochemical reactions within the cell. This chemical energy is stored within the molecule ATP which is produced. Respiration in the mitochondria utilizes oxygen for the production of ATP in the Krebs’ or Citric acid cycle via the oxidization of pyruvate( through the process of glycolysis in the cytoplasm).
overall: C6H12O6 (glucose) + 6 O2 → 6 CO2 + 6 H2O + ≈38 ATP
Oxidative phosphorylation describes a process in which the NADH and FADH2 made in previous steps of respiration process give up electrons in the electron transport chain these are converted it to their previous forms, NADH+ and FAD. Electrons continue to move down the chain the energy they release is used in pumping protons out of the matrix of the mitochondria.
This forms a gradient where there is a differential in the number of protons on either side of the membrane the protons flow or re-enter the matrix through the enzyme ATP synthase, which makes the energy storage molecules of ATP from the reduction of ADP. At the end of the electron transport, three molecules of oxygen accept electrons and protons to form molecules of water...
- Glycolysis: occurs in the cytoplasm 2 molecules of ATP are used to cleave glucose into 2 pyruvates, 4 ATP and 2 electron carrying NADH molecules.
- The Kreb's cycle: in the mitochondrial matrix- 6 molecules of CO2 are produced by combining oxygen and the carbon within pyruvate, 2 ATP oxygen molecules, 8 NADH and 2 FADH2.
- The electron transport chain, ETC: in the inner mitochondrial membrane, 34 ATP, electrons combine with H+ split from 10 NADH, 4 FADH2, renewing the number of electron acceptors and 3 oxygen; this forms 6 H2O, 10 NAD+, 4 FAD.
Learn more about cellular life at brainly.com/question/11259903
Learn more about cellular respiration at brainly.com/question/11203046
#LearnWithBrainly
Answer:
The correct ecological sequence regarding this case, to answer your question: What is the correct sequence of ecological roles played by the bacterium in the situation decribed here, would be: 1. mutualism, 2. Parasitism and finally 3. Nutrient recycler.
Explanation:
Ecological balance comes when species interact, and help each other out, by carrying out tasks that the other species cannot perform. When this happens, both species benefit from the presence of the other, and thus are kept in balance. However, conditions may change that will affect this balance.
In this case, we have a bacteria and a plant that are ecologically balanced with each other: the plant provides nutrients to the bacteria, and the bacteria helps the plant by maintaining other microorganisms away. However, when the conditions of the plant change, giving the bacteria access to its insides, which are more nutrient-rich, than the outside, these bacteria do not waste time and infect the plant, until it kills, and then decomposes, the plant. Given the sequence, the first part is known as mutualism: to species sharing benefits. Parsitism, because the bacteria infected the plant and lived now off it, destroying it. And finally, nutrient recycler because the bacteria breaks down the plant, decomposes it, returning to the ecosystem nutrients that were inside the plant.
Answer:
Lower Respiratory Tract
Explanation:
The lower respiratory tract or lower airway is derived from the developing foregut and consists of the trachea, bronchi (primary, secondary and tertiary), bronchioles (including terminal and respiratory), and lungs (including alveoli). It also sometimes includes the larynx, which we have done here. This is where gas exchange actually takes place.
The order of processes of nature are towards greater entropy. This means towards greater disorder. These processes occurring in nature and surroundings involves a mass and an energy. The matter where mass is contained is the system and energy is the tool which changes and process occur. In this case, answer is true.
Answer:
25%
Explanation:
According to this question, a seek stored seeds of a rare and endangered plant. In order to ensure that the seeds remain fresh, 120 seeds are selected to be grown. However, out of these 120 seeds, only 90 germinated. This means that only 90 of 120 seeds are fertile.
This further means that (120-90) = 30 seeds are infertile and hence, could not germinate. In percentage, this can be represented as:
30/120 × 100
= 1/4 × 100
= 100/4
= 25% of the selected seeds are infertile.