1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
klio [65]
3 years ago
15

Which quantity is used to generate the error bars in a graph? Range. Median. Linear correlation. Standard deviation.

Biology
2 answers:
STALIN [3.7K]3 years ago
7 0

Answer:

Option D, Standard deviation

Explanation:

The error bars in a graph depict how the data varies from each other with in a data set. Or in other words it shows the irregularities and uncertainties in the data. A standard error data graph shows how the values in a data set vary from the mean value.  

Standards error value is equal to  

SD = \frac{\sqrt{(X -M)^_{2} } }{N-1} \\\\SE = \frac{SD}{\sqrt{N} }

Where SE is standards error

SD is standard deviation

M is the mean value of data set

X is all numerical value of a given data set

N is the number of values in a data set

Hence, option D is correct.

larisa86 [58]3 years ago
4 0
Standard deviation, really hope this helps you out :)
You might be interested in
Question 1
lorasvet [3.4K]
It can be possible because the mother can present B blood phenotype. This opens the possibility of she having an heterozygous genotype of I^b i or I^b I^b which are dominant over the genotype of the O type father.
3 0
3 years ago
Which of the following is an example of regulated waste?
Debora [2.8K]

Answer:

D. A used bed sheet

Explanation:

just took the test

4 0
3 years ago
Describe how blood is pumped and circulated through the body. Include the roles of the various chambers of the heart, the major
Korvikt [17]

The heart is a pump, usually beating about 60 to 100 times per minute. With each heartbeat, the heart sends blood throughout our bodies, carrying oxygen to every cell. After delivering the oxygen, the blood returns to the heart. The heart then sends the blood to the lungs to pick up more oxygen. This cycle repeats over and over again.

The circulatory system is made up of blood vessels that carry blood away from and towards the heart. Arteries carry blood away from the heart and veins carry blood back to the heart.

The circulatory system carries oxygen, nutrients, and hormones to cells, and removes waste products, like carbon dioxide. These roadways travel in one direction only, to keep things going where they should.

The heart has four chambers — two on top and two on bottom:

The two bottom chambers are the right ventricle and the left ventricle. These pump blood out of the heart. A wall called the interventricular septum is between the two ventricles.

The two top chambers are the right atrium and the left atrium. They receive the blood entering the heart. A wall called the interatrial septum is between the atria.

The atria are separated from the ventricles by the atrioventricular valves:

The tricuspid valve separates the right atrium from the right ventricle.

The mitral valve separates the left atrium from the left ventricle.

Two valves also separate the ventricles from the large blood vessels that carry blood leaving the heart:

The pulmonic valve is between the right ventricle and the pulmonary artery, which carries blood to the lungs.

The aortic valve is between the left ventricle and the aorta, which carries blood to the body.

What Are the Parts of the Circulatory System?

Two pathways come from the heart:

The pulmonary circulation is a short loop from the heart to the lungs and back again.

The systemic circulation carries blood from the heart to all the other parts of the body and back again.

In pulmonary circulation:

The pulmonary artery is a big artery that comes from the heart. It splits into two main branches, and brings blood from the heart to the lungs. At the lungs, the blood picks up oxygen and drops off carbon dioxide. The blood then returns to the heart through the pulmonary veins.

In systemic circulation:

Next, blood that returns to the heart has picked up lots of oxygen from the lungs. So it can now go out to the body. The aorta is a big artery that leaves the heart carrying this oxygenated blood. Branches off of the aorta send blood to the muscles of the heart itself, as well as all other parts of the body. Like a tree, the branches gets smaller and smaller as they get farther from the aorta.

At each body part, a network of tiny blood vessels called capillaries connects the very small artery branches to very small veins. The capillaries have very thin walls, and through them, nutrients and oxygen are delivered to the cells. Waste products are brought into the capillaries.

Capillaries then lead into small veins. Small veins lead to larger and larger veins as the blood approaches the heart. Valves in the veins keep blood flowing in the correct direction. Two large veins that lead into the heart are the superior vena cava and inferior vena cava. (The terms superior and inferior don't mean that one vein is better than the other, but that they're located above and below the heart.)

Once the blood is back in the heart, it needs to re-enter the pulmonary circulation and go back to the lungs to drop off the carbon dioxide and pick up more oxygen.

How Does the Heart Beat?

The heart gets messages from the body that tell it when to pump more or less blood depending on a person's needs. For example, when you're sleeping, it pumps just enough to provide for the lower amounts of oxygen needed by your body at rest. But when you're exercising, the heart pumps faster so that your muscles get more oxygen and can work harder.

How the heart beats is controlled by a system of electrical signals in the heart. The sinus (or sinoatrial) node is a small area of tissue in the wall of the right atrium. It sends out an electrical signal to start the contracting (pumping) of the heart muscle. This node is called the pacemaker of the heart because it sets the rate of the heartbeat and causes the rest of the heart to contract in its rhythm.

4 0
3 years ago
NEED REAL ANSWER NICE AMOUNT OF POINTS AND BRAINLY
labwork [276]

Answer:

The compound boron trifluoride, BF3, does not have non-bonding valence electrons and  The following diagram shows four possible orientations of the O-H bonds.  but the other configurations would give two different CH2Cl2 compounds. structure consisting of a simple chain of four carbon atoms, CH3CH2CH2CH3.

Explanation:

take notes

7 0
3 years ago
Read 2 more answers
Two different species of single-celled Eukaryotes conduct Cellular Respiration. The first species lives in an oxygenated environ
lorasvet [3.4K]

Cellular respiration occurs in both eukaryotic and prokaryotic cells, with most reactions taking place in the cytoplasm of prokaryotes and in the mitochondria of eukaryotes.

Hope it Helps!

6 0
2 years ago
Other questions:
  • A scientist finds fossae on a bone sample. what can the scientist conclude?
    8·2 answers
  • The major source of glucose to elevate a low blood glucose level is ______ stored in the
    14·1 answer
  • Svetlana loves plants and animals. She wants to study how they live in their environments. Svetlana will most likely become a(n)
    15·2 answers
  • What are catabolic reactions
    7·2 answers
  • Describe the environmental advantages and disadvantages of using hydroelectric power to generate electricity in the UK.
    12·1 answer
  • Help Me out please<br>I will mark brainiest​
    14·2 answers
  • Using the drawing, which function of the skeletal system does the joint between the humerus
    9·2 answers
  • How do igneous rocks provide evidence about the Earth?
    6·2 answers
  • Why are nitrogen oxides considered harmful to humans?
    13·2 answers
  • Which of the ideas below is a good characteristic of a scientific experiment?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!