1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pentagon [3]
3 years ago
8

Consider two people where one person is 20​% taller than the other but proportioned in exactly the same way.​ (That is, the tall

er person looks like a larger version of the shorter​ person.) Suppose the shorter person has a 36​-inch waist. What size is the taller​ person's waist?
Mathematics
2 answers:
Masja [62]3 years ago
7 0

Answer:

43.2in

Step-by-step explanation:

If the two people are equally proportional, then knowing the size of the waist of one of them, we gonna we be able to know the other's wais size, by the relation.

36in*(1*20%) = 36in*1.2 = 43.2in

Vinil7 [7]3 years ago
3 0

<u>Answer:</u>

The taller person's waist size is 43.2 inches

<u>Solution:</u>

As given in the question, if 2 people are equal in proportion, then the taller person has 20% taller or larger waist than the smaller person in any given dimension. This means that, the taller person’s waist would be 120 % of the smaller person.

Hence, we multiply 1.2 (120%) with 36 inches (waist size of shorter person) which gives the waist size of the taller person as 43.2 inches.

36\times (1.2) = 43.2 inches.

You might be interested in
Guys pls help meeee<br> i need help
Jobisdone [24]

Answer:

1 over 12 or 1/12

Step-by-step explanation:

there are 6 side on a dice. rolling a five is a 1 out of 6 chance and an even number is a 3 out of six chance. multiply them together to get 3 out of 36 simplify to get 1 out of 12

5 0
2 years ago
Read 2 more answers
I need help like really bad in the next 10 mins or I fail math please help me-
shutvik [7]
The answer should be 16!!
5 0
3 years ago
Read 2 more answers
Calculating the Surface Area of a Triangular Prism The triangular prism shown has 1235 triangular face(s) and 1235 lateral face(
GenaCL600 [577]

Corrected Question

The triangular prism shown has 1, 2, 3 or 5 triangular faces and 1,2,3, or 5 lateral faces.

The area of one triangular face is 7.5,8.125,15,or 17  mm^2

The surface area of the triangular prism is 55.5,127.5,135,or 150  mm^2

Answer:

(B)2 triangular faces

(C)3 lateral faces.

(A)Area of one Triangular Face =7.5mm^2

(C)Total Surface Area of the Triangular prism =135mm^2

Step-by-step explanation:

The triangular prism is attached.

The triangular prism shown has 2 triangular faces and 3 lateral faces.

Base of the triangle =2.5mm

Height of the Triangle =6mm

Area of one Triangular Face =\frac{1}{2}*6*2.5=7.5mm^2

The dimensions of the lateral rectangles are:

  • 2.5 mm by 8mm
  • 6 mm by 8mm
  • 6.5 mm by 8mm

Therefore, total surface area of the triangular prism

=2(Area of one Triangular Face)+Area of 3 rectangular faces

=2(7.5)+ (2.5 X 8+ 6 X 8 + 6.5 X 8)\\=15+120\\=135mm^2

Total Surface Area of the Triangular prism =135mm^2

8 0
3 years ago
Update:
ohaa [14]

Answer:

Love vines!

Step-by-step explanation:

But vine left us while getting milk. And tick tock is like our step father that we've grew to love :)

4 0
3 years ago
Read 2 more answers
A fair coin is flipped twelve times. What is the probability of the coin landing tails up exactly nine times?
seraphim [82]

Answer:

P\left(E\right)=\frac{55}{1024}

Step-by-step explanation:

Given that a fair coin is flipped twelve times.

It means the number of possible sequences of heads and tails would be:

2¹² = 4096

We can determine the number of ways that such a sequence could contain exactly 9 tails is the number of ways of choosing 9 out of 12, using the formula

nCr=\frac{n!}{r!\left(n-r\right)!}

Plug in n = 12 and r = 9

       =\frac{12!}{9!\left(12-9\right)!}

       =\frac{12!}{9!\cdot \:3!}

       =\frac{12\cdot \:11\cdot \:10}{3!}            ∵ \frac{12!}{9!}=12\cdot \:11\cdot \:10

       =\frac{1320}{6}                   ∵ 3!\:=\:3\times 2\times 1=6

       =220

Thus, the probability will be:

P\left(E\right)=\frac{n\left(E\right)}{n\left(S\right)}

         =\frac{220}{4096}

         =\frac{55}{1024}

Thus, the probability of the coin landing tails up exactly nine times will be:

P\left(E\right)=\frac{55}{1024}

4 0
3 years ago
Other questions:
  • If the foreign exchange rate between the U.S. dollar and the Danish krone is 1:2.50, how many Danish kroner will you get for $5?
    15·1 answer
  • Ross paints a wall in her bedroom she puts green paint on 5/8 of the wall and blue paint on 3/8 of the wall which of the followi
    7·1 answer
  • A stop sign is in the shape of a regular octagon. Each side measures 12.4 inches and the apothem of the octagon measures 15 inch
    11·2 answers
  • What polynomial identity should be used to prove that 35 = 8 + 27
    9·2 answers
  • True or false? A circle could be circumscribed about the quadrilateral below.
    6·1 answer
  • The Aluminum Association reports that the average American uses 56.8 pounds of aluminum in a year. A random sample of 51 househo
    7·1 answer
  • The diagram below shows vector v.
    13·1 answer
  • Carol creates a flag consisting of two similar triangles and labels them
    14·1 answer
  • 8/15 times 3 1/3 and simplified
    8·2 answers
  • A money market account is a collection of stock and bonds true or false
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!