I think the correct answer from the choices listed above is option B. The very high voltage needed to create a spark across the spark plug is produced at the transformer's secondary winding. <span>The secondary coil is engulfed by a powerful and changing magnetic field. This field induces a current in the coils -- a very high-voltage current.</span>
Answer:
- 1.42m/s²
Explanation:
Acceleration is defined as the change in velocity of a body with respect to time.
Acceleration = change in velocity/time
Change in velocity = final velocity - initial velocity
Acceleration = final velocity - initial velocity/time
Since she slows her car from 14.0 to 5.5m/s in 6seconds,
Initial velocity = 14m/s
Final velocity = 5.5m/s
Time = 6seconds
Substituting in the given formula, we will have
Acceleration = 5.5 - 14/6
Acceleration = - 8.5/6
Acceleration = - 1.42m/s²
The negative acceleration shows that the car decelerates.
Answer:
a. 4.9 m
Explanation:
To solve this problem we must take into account that power is defined as the relationship between the work and the time in which the work is done.
P = W/t
where:
P = power = 95 [W] (units of watts)
W = work [J] (units of Joules)
t = time = 6.2 [s]
We can clear the work from the previous equation.
W = P*t
W = 95*6.2 = 589 [J]
Now we know that the work is defined by the product of the force by the distance, therefore we can express the work done with the following equation.
W = F*d
where:
F = force = 120 [N] (units of Newtons)
d = distance [m]
d = W/F
d = 589/120
d = 4.9 [m]