Answer:
15.75 m
Explanation:
First, let's look at the top brick by itself. In order for it not to tip over the bottom brick, its center of gravity must be right at the edge of the bottom brick. So the edge of the top brick must be 10.5 m from the edge of the bottom brick.
Now let's look at both bricks as a combined mass. We know the total length of this combined brick is 10.5 m + 21 m = 31.5 m. And we know that for it to not tip over the edge of the surface, its center of gravity must be at the edge. So the edge of the combined brick must be 31.5 m / 2 = 15.75 m from the edge of the surface.
The value of g at sea level is 9.81 ms^-2.
The boy's mass is constant wherever he is in the universe but his weight will depend on the strength gravity where he is.
By proportion its value on the mountain peak is (360 /400) * 9.81
= 0.9 * 9.81 = 8.83 ms^-2 to nearest hundredth, (answer).
Answer: option A. strong nuclear force.
Explanation:
The diagram shows the subatomic particles inside the nucelous: protons and neutrons.
As you know, the protons are positively charged partilces inside the nucleous.
Being those particles charged with the same kind of charge they experiment electrostatic repulsion. So, how do you explain that they can stand together in such small space as it is the nucleous?
The responsible of keeping the subatomic particles together is the so called strong nuclear force.
Strong nuclear force or simply strong force is one of the four fundamental interactions or forces: i) gravitational, ii) electromagnetic, iii) weak nuclear force, and iv) strong nuclear force.
Strong nuclear force is the strongest force of nature and acts only in short distances as those inside the nucleous and is responsible for both the atraction among quarks and the atraction among protons to bind them together inside the atomic nucleous.
Answer:
The angle it subtend on the retina is
Explanation:
From the question we are told that
The length of the warbler is 
The distance from the binoculars is 
The magnification of the binoculars is 
Without the 8 X binoculars the angle made with the angular size of the object is mathematically represented as



Now magnification can be represented mathematically as

Where
is the angle the image of the warbler subtend on your retina when the binoculars i.e the binoculars zoom.
So

=> 

Generally the conversion to degrees can be mathematically evaluated as

I think the logical question here is to either find the distance or the displacement. They differ in such a way that distance is a scalar quantity that does not focus on the direction. Displacement is a vector quantity that covers the distance from the starting point to end point. Because it travels only in one direction (to the east), in this condition, distance is equal to displacement.
Distance = Displacement = 3,000 m + 1,500 m = 4,500 m