<span>Electromagnetic
radiation are represented in waves. Each type of wave has a certain shape and
length. The distance between two peaks in a wave is called the wavelength. It
is indirectly related to the frequency which is the number of wave that pass
per unit of time. Wavelength is equal to the speed of light divided by the
frequency. We calculate as follows:
Wavelength = </span>300,000,000 m/sec / <span>650,000,000,000,000 per second
Wavelength = 4.62x10^-4 m</span>
Answer:
<h2>The pin's final velocity is 5m/s</h2>
Explanation:
Step one:
given data
mass of ball m1=5kg
initial velocity of ball u1=10m/s
mass of pin m2=2kg
initial velocity of pin u2= 0m/s
final velocity of ball v2=8m/s
final velocity of pin v2=?
Step two:
The expression for elastic collision is given as
m1u1+m2u2=m1v1+m2v2
substituting we have
5*10+2*0=5*8+2*v2
50+0=40+2v2
50-40=2v2
10=2v2
divide both sides by 2
v2=10/2
v2=5m/s
The pin's final velocity is 5m/s
If the machine's mechanical advantage is 4.5, that means that
Output force = (4.5) x (Input force) .
We know the input force, and we need to find the output force. Rather than wander around the room looking at the floor while our hair smolders, let's try putting the numbers we know into the equation I wrote up there. OK ?
Output force = (4.5) x (Input force)
Output force = (4.5) x (800 N)
Now dooda multiplication:
<em>Output force = 3,600 N</em> .
That's exactly what the question asked for. So we're done !
Answer:
due to its distance ..............