The answer is D, or Outer Space.
Explanation:
Sound is implemented through mechanical wave transferral, which requires a medium (solid, liquid, or gas) to travel through. Because sound is a mechanical wave, it cannot travel through vacuums (space).
The ducks' flight path as observed by someone standing on the ground is the sum of the wind velocity and the ducks' velocity relative to the wind:
ducks (relative to wind) + wind (relative to Earth) = ducks (relative to Earth)
or equivalently,

(see the attached graphic)
We have
- ducks (relative to wind) = 7.0 m/s in some direction <em>θ</em> relative to the positive horizontal direction, or

- wind (relative to Earth) = 5.0 m/s due East, or

- ducks (relative to earth) = some speed <em>v</em> due South, or

Then by setting components equal, we have


We only care about the direction for this question, which we get from the first equation:



or approximately 136º or 224º.
Only one of these directions must be correct. Choosing between them is a matter of picking the one that satisfies <em>both</em> equations. We want

which means <em>θ</em> must be between 180º and 360º (since angles in this range have negative sine).
So the ducks must fly (relative to the air) in a direction 224º relative to the positive horizontal direction, or about 44º South of West.
The electric force on the proton is:
F = Eq
F = electric force, E = electric field strength, q = proton charge
The gravitational force on the proton is:
F = mg
F = gravitational force, m = proton mass, g = gravitational acceleration
Since the electric force and gravitational force balance each other out, set their magnitudes equal to each other:
Eq = mg
Given values:
q = 1.60×10⁻¹⁹C, m = 1.67×10⁻²⁷kg, g = 9.81m/s²
Plug in and solve for E:
E(1.60×10⁻¹⁹) = 1.67×10⁻²⁷(9.81)
E = 1.02×10⁻⁷N/C
Answer:
C. A force must be acting on the object.
Explanation:
This is due to the action of its momentum direction.

Kinetic energy is the energy possessed by an object when that object is moving in space. The higher the mass of an object or higher the speed of an object the higher the kinetic energy will be.
So to calculate the Kinetic Energy we can use the following formula
K.E=(1/2)*m*v^2
Inserting the values in formula gives:
K.E=1/2*7.26*2^2
14.52J
This is the final answer which gives the kinetic energy of the ball.