To find the volume<span>, we use the formula V = (1/3)AH, where A = area of the </span>pyramid's base and H = height of the pyramid<span>.
Hope this helped</span>
Answer:
∠1 is 33°
∠2 is 57°
∠3 is 57°
∠4 is 33°
Step-by-step explanation:
First off, we already know that ∠2 is 57° because of alternate interior angles.
Second, it's important to know that rhombus' diagonals bisect each other; meaning they form 90° angles in the intersection. Another cool thing is that the diagonals bisect the existing angles in the rhombus. Therefore, 57° is just half of something.
Then, you basically just do some other pain-in-the-butt things after.
Since that ∠2 is just the bisected half from one existing angle, that means that ∠3 is just the other half; meaning that ∠3 is 57°, as well.
Next is to just find the missing angle ∠1. Since we already know ∠3 is 57°, we can just add that to the 90° that the diagonals formed at the intersection.
57° + 90° = 147°
180° - 147° = 33°
∠1 is 33°
Finally, since that ∠4 is just an alternate interior angle of ∠1, ∠4 is 33°, too.
1043
x 52
--------
2086
52150
----------
54236
He/She will earn $54,236 a year
Answer:
In graph theory and computer science, an adjacency matrix is a square matrix used to represent a finite graph. The elements of the matrix indicate whether pairs of vertices are adjacent or not in the graph.
In the special case of a finite simple graph, the adjacency matrix is a (0,1)-matrix with zeros on its diagonal. If the graph is undirected, the adjacency matrix is symmetric. The relationship between a graph and the eigenvalues and eigenvectors of its adjacency matrix is studied in spectral graph theory.
The adjacency matrix should be distinguished from the incidence matrix for a graph, a different matrix representation whose elements indicate whether vertex–edge pairs are incident or not, and degree matrix which contains information about the degree of each vertex.