Answer:
Step-by-step explanation:
3.) An extreme value refers to a point on the graph that is possibly a maximum or minimum. At these points, the instantaneous rate of change (slope) of the graph is 0 because the line tangent to the point is horizontal. We can find the rate of change by taking the derivative of the function.
y' = 2ax + b
Now that we where the derivative, we can set it equal to 0.
2ax + b = 0
We also know that at the extreme value, x = -1/2. We can plug that in as well.

The 2 and one-half cancel each other out.


Now we know that a and b are the same number, and that ax^2 + bx + 10 = 0 at x = -1/2. So let's plug -1/2 in for x in the original function, and solve for a/b.
a(-0.5)^2 + a(-0.5) + 10 = 0
0.25a - 0.5a + 10 = 0
-0.25a = -10
a = 40
b = 40
To determine if the extrema is a minima or maxima, we need to go back to the derivative and plug in a/b.
80x + 40
Our critical number is x = -1/2. We need to plug a number that is less than -1/2 and a number that is greater than -1/2 into the derivative.
LESS THAN:
80(-1) + 40 = -40
GREATER THAN:
80(0) + 40 = 40
The rate of change of the graph changes from negative to positive at x = -1/2, therefore the extreme value is a minimum.
4.) If the quadratic function is symmetrical about x = 3, that means that the minimum or maximum must be at x = 3.
y' = 2ax + 1
2a(3) + 1 = 0
6a = -1
a = -1/6
So now plug the a value and x=3 into the original function to find the extreme value.
(-1/6)(3)^2 + 3 + 3 = 4.5
The extreme value is 4.5
Answer:
-76
Step-by-step explanation:
Answer:
ans=13.59%
Step-by-step explanation:
The 68-95-99.7 rule states that, when X is an observation from a random bell-shaped (normally distributed) value with mean
and standard deviation
, we have these following probabilities



In our problem, we have that:
The distribution of the number of months in service for the fleet of cars is bell-shaped and has a mean of 53 months and a standard deviation of 11 months
So 
So:



-----------



-----
What is the approximate percentage of cars that remain in service between 64 and 75 months?
Between 64 and 75 minutes is between one and two standard deviations above the mean.
We have
subtracted by
is the percentage of cars that remain in service between one and two standard deviation, both above and below the mean.
To find just the percentage above the mean, we divide this value by 2
So:

The approximate percentage of cars that remain in service between 64 and 75 months is 13.59%.
L=n-2, W=4+L=n+2
A=LW, since L=n-2 and W=n+2 we have:
A=(n-2)(n+2) so it could be this expression or the expansion
A=n^2-4