3( 1/2 - y) = 3/5 + 15y
Applying distributive property:
3*1/2 - 3y = 3/5 + 15y
3/2 - 3y = 3/5 + 15y
3/5 is adding on the right, then it will subtract on the left
3y is adding on the left, then it will subtract on the right
3/2 - 3/5 = 15y + 3y
15/10 - 6/10 = 18y
9/10 = 18y
18 is multiplying on the right, then it will divide on the left
9/10*1/18 = y
1/10*1/2 = y
1/20 = y
16,000 is your answer :)
look next to the 6. Since it is less than 5, you do nothing to the 16 part and turn the rest to 0's.
Answer:
D-The first bucket will be completely filled 11 minutes before the second bucket sorry if i am wrong
Step-by-step explanation:
Answer:
![32 {x}^{2} \sqrt[3]{ 2x } -8{x}^{3}](https://tex.z-dn.net/?f=32%20%7Bx%7D%5E%7B2%7D%20%5Csqrt%5B3%5D%7B%202x%20%7D%20%20%20%20-8%7Bx%7D%5E%7B3%7D)
Step-by-step explanation:
We want to
![4x \sqrt[3]{4 {x}^{2} } (2 \sqrt[3]{32 {x}^{2} } - x \sqrt[3]{2x} )](https://tex.z-dn.net/?f=4x%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%7D%20%282%20%5Csqrt%5B3%5D%7B32%20%7Bx%7D%5E%7B2%7D%20%7D%20%20-%20x%20%5Csqrt%5B3%5D%7B2x%7D%20%29)
We expand to obtain:
![4x \sqrt[3]{4 {x}^{2} } \times 2 \sqrt[3]{32 {x}^{2} } -4x \sqrt[3]{4 {x}^{2} } \times x \sqrt[3]{2x} )](https://tex.z-dn.net/?f=4x%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%7D%20%20%5Ctimes%202%20%5Csqrt%5B3%5D%7B32%20%7Bx%7D%5E%7B2%7D%20%7D%20%20-4x%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%7D%20%5Ctimes%20%20x%20%5Csqrt%5B3%5D%7B2x%7D%20%29)
We now simplify
![8x \sqrt[3]{4 {x}^{2} \times 32 {x}^{2} } -4 {x}^{2} \sqrt[3]{4 {x}^{2} \times 2x}](https://tex.z-dn.net/?f=8x%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%20%5Ctimes%2032%20%7Bx%7D%5E%7B2%7D%20%7D%20%20%20%20-4%20%7Bx%7D%5E%7B2%7D%20%20%5Csqrt%5B3%5D%7B4%20%7Bx%7D%5E%7B2%7D%20%20%5Ctimes%202x%7D%20)
We multiply the radicand
![8x \sqrt[3]{64 \times {x}^{3} \times 2x } -4 {x}^{2} \sqrt[3]{8 {x}^{3}}](https://tex.z-dn.net/?f=8x%20%5Csqrt%5B3%5D%7B64%20%5Ctimes%20%7Bx%7D%5E%7B3%7D%20%20%5Ctimes%202x%20%7D%20%20%20%20-4%20%7Bx%7D%5E%7B2%7D%20%20%5Csqrt%5B3%5D%7B8%20%7Bx%7D%5E%7B3%7D%7D%20)
Or
![8x \sqrt[3]{ {(4x)}^{3} \times 2x } -4 {x}^{2} \sqrt[3]{{(2x)}^{3}}](https://tex.z-dn.net/?f=8x%20%5Csqrt%5B3%5D%7B%20%7B%284x%29%7D%5E%7B3%7D%20%20%5Ctimes%202x%20%7D%20%20%20%20-4%20%7Bx%7D%5E%7B2%7D%20%20%5Csqrt%5B3%5D%7B%7B%282x%29%7D%5E%7B3%7D%7D%20)
We take cube root to get:
![8x \times 4x\sqrt[3]{ 2x } -4 {x}^{2} \times 2x](https://tex.z-dn.net/?f=8x%20%20%5Ctimes%204x%5Csqrt%5B3%5D%7B%202x%20%7D%20%20%20%20-4%20%7Bx%7D%5E%7B2%7D%20%20%5Ctimes%202x)
We multiply out to get:
![32 {x}^{2} \sqrt[3]{ 2x } -8{x}^{3}](https://tex.z-dn.net/?f=32%20%7Bx%7D%5E%7B2%7D%20%5Csqrt%5B3%5D%7B%202x%20%7D%20%20%20%20-8%7Bx%7D%5E%7B3%7D)