1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex Ar [27]
3 years ago
5

Write an equation in standard form of the line that passes through (7, -3) and has a y intercept of 3.

Mathematics
2 answers:
SpyIntel [72]3 years ago
4 0
Y=mx+c
-3=7+c
-10=c
y=7x+c
jarptica [38.1K]3 years ago
3 0
Y = 7/-3x(<< write how you would write a fraction) + 3

You might be interested in
Suppose a rectangular pasture is to be constructed using 1 2 linear mile of fencing. The pasture will have one divider parallel
timama [110]

Answer:

\displaystyle A=\frac{1}{192}

Step-by-step explanation:

<u>Maximization With Derivatives</u>

Given a function of one variable A(x), we can find the maximum or minimum value of A by using the derivatives criterion. If A'(x)=0, then A has a probable maximum or minimum value.

We need to find a function for the area of the pasture. Let's assume the dimensions of the pasture are x and y, and one divider goes parallel to the sides named y, and two dividers go parallel to x.

The two divisions parallel to x have lengths y, thus the fencing will take 4x. The three dividers parallel to y have lengths x, thus the fencing will take 3y.

The amount of fence needed to enclose the external and the internal divisions is

P=4x+3y

We know the total fencing is 1/2 miles long, thus

\displaystyle 4x+3y=\frac{1}{2}

Solving for x

\displaystyle x=\frac{\frac{1}{2}-3y}{4}

The total area of the pasture is

A=x.y

Substituting x

\displaystyle A=\frac{\frac{1}{2}-3y}{4}.y

\displaystyle A=\frac{\frac{1}{2}y-3y^2}{4}

Differentiating with respect to y

\displaystyle A'=\frac{\frac{1}{2}-6y}{4}

Equate to 0

\displaystyle \frac{\frac{1}{2}-6y}{4}=0

Solving for y

\displaystyle y=\frac{1}{12}

And also

\displaystyle x=\frac{\frac{1}{2}-3\cdot \frac{1}{12}}{4}=\frac{1}{16}

Compute the second derivative

\displaystyle A''=-\frac{3}{2}.

Since it's always negative, the point is a maximum

Thus, the maximum area is

\displaystyle A=\frac{1}{12}\cdot \frac{1}{16}=\frac{1}{192}

6 0
3 years ago
Neep help pls, what is the answer????
saveliy_v [14]

Answer:

No, According to triangle Inequality theorem.

Step-by-step explanation:

Given:

Length given are 4 in., 5 in., 1 in.

We need to check whether with these lengths we can create triangular components.

The Triangle Inequality Theorem states that the sum of any 2 sides of a triangle must be greater than the measure of the third side.

These must be valid for all three sides.

Hence we will check for all three side,

4 in + 5 in > 1 in. (It is a Valid Condition)

1 in + 5 in > 4 in. (It is a Valid Condition)

4 in + 1 in > 5 in. (It is not a Valid Condition)

Since 2 condition are valid and 1 condition is not we can say;

A triangular component cannot be created with length 4 in, 5 in, and 1 in by using triangle inequality theorem (since all three conditions must be valid).

6 0
3 years ago
Two sides of a triangle measure 25 cm and 35 cm. What is the meadure of the third side?
SpyIntel [72]

Answer:

43cm

Step-by-step explanation:

use the pythagorean theorem:

a² + b² = c²

25² + 35² = c²

625 + 1225 = c²

1850 = c²

√1850 = c

43 cm = c

your a, b and c values depend on where the values are on the triangle.

4 0
3 years ago
HELP PLS I DONT KNOW THIS ONE
inessss [21]

Answer:

1                  

-------------  

(x+2)(x-4)

Step-by-step explanation:

x+4                    x+3

-------------   * --------------

x^2+5x+6        x^2 -16

Factor

x+4                    x+3

-------------   * --------------

(x+3)(x+2)        (x+4)(x-4)

Cancel like terms

1                  1

-------------   * --------------

(1)(x+2)        (1)(x-4)

1                  

-------------    x cannot equal -3, -4, -2, 4  

(x+2)(x-4)

5 0
3 years ago
They take 5 days to drive 679 miles to Seattle, how many miles will they drive each day?
Kisachek [45]

If they take 5 days to drive 679 miles to Seattle. Then the number of miles that they drive each day will be 135.8 miles per day.

<h3>What is speed?</h3>

The distance covered by the particle or the body in an hour is called speed. It is a scalar quantity. It is the ratio of distance to time.

We know that the speed formula

Speed = Distance/Time

They take 5 days to drive 679 miles to Seattle.

Then the number of miles that they drive each day will be

→ 679 / 5

→ 135.8 miles per day.

More about the speed link is given below.

brainly.com/question/7359669

#SPJ2

8 0
2 years ago
Read 2 more answers
Other questions:
  • The daily cost of production in a factory is calculated using c(x) = 200 +16 x, where x is the number of complete products manuf
    8·2 answers
  • Urgent: The price of a gallon of unleaded gas was $2.81 yesterday. Today, the price rose to $2.86. Find the percentage increase.
    13·1 answer
  • What does -2x+9=-4x+27 equal
    14·2 answers
  • Solve this equation -56=8r​
    12·1 answer
  • What is the greatest common factor of 42a^5b^3, and 42ab^4
    5·1 answer
  • Find the coordinates of point B that lies along the directed line segment from A(-5, 2) to C(11, 0) and partitions the segment i
    11·1 answer
  • I need help on these questions ( will give brianliest if im able to )
    7·1 answer
  • Jacob plans to work at his family's restaurant this summer to make some extra money. His parents have agreed to pay him $9.75 pe
    7·1 answer
  • What is the least common Denominator for 29/40
    5·1 answer
  • Please answer the question below
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!