A and B can react to form C and D or, in the reverse reaction, C and D can react to form A and B. This is distinct from reversible process in thermodynamics.
Weak acids and bases undertake reversible reactions. For example, carbonic acid: H2CO3 (l) + H2O(l) ⇌ HCO−3 (aq) + H3O+(aq).
The concentrations of reactants and products in an equilibrium mixture are determined by the analytical concentrations of the reagents (A and B or C and D) and the equilibrium constant, K. The magnitude of the equilibrium constant depends on the Gibbs free energy change for the reaction.[2] So, when the free energy change is large (more than about 30 kJ mol−1), then the equilibrium constant is large (log K > 3) and the concentrations of the reactants at equilibrium are very small. Such a reaction is sometimes considered to be an irreversible reaction, although in reality small amounts of the reactants are still expected to be present in the reacting system. A truly irreversible chemical reaction is usually achieved when one of the products exits the reacting system, for example, as does carbon dioxide (volatile) in the reaction
Herbaceous mano it has vascular bundles arranged in a ring around the pit and herbaceous dicot stems has a vascular cambium between xylem and phloem
It kills of the virus while strengthening the immune system
If the mutation is beneficial, the mutated organism survives to reproduce, and the mutation gets passed on to its offspring. In this way, natural selection guides the evolutionary process to incorporate only the good mutations into the species, and expunge the bad mutations.
Human activities such as Smog and Greenhouse gas can weaken the Earth's atmosphere allowing the suns rays to be more powerful when passing through the Atmosphere.