Step-by-step explanation:
Take the first derivative


Set the derivative equal to 0.




or

For any number less than -1, the derivative function will have a Positve number thus a Positve slope for f(x).
For any number, between -1 and 1, the derivative slope will have a negative , thus a negative slope.
Since we are going to Positve to negative slope, we have a local max at x=-1
Plug in -1 for x into the original function

So the local max is 2 and occurs at x=-1,
For any number greater than 1, we have a Positve number for the derivative function we have a Positve slope.
Since we are going to decreasing to increasing, we have minimum at x=1,
Plug in 1 for x into original function


So the local min occurs at -2, at x=1
Answer:
(i) (f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = x³ + 4·x² + 5·x + 2
Step-by-step explanation:
The given functions are;
f(x) = x² + 3·x + 2
g(x) = x + 1
(i) (f - g)(x) = f(x) - g(x)
∴ (f - g)(x) = x² + 3·x + 2 - (x + 1) = x² + 3·x + 2 - x - 1 = x² + 2·x + 1
(f - g)(x) = x² + 2·x + 1
(ii) (f + g)(x) = f(x) + g(x)
∴ (f + g)(x) = x² + 3·x + 2 + (x + 1) = x² + 3·x + 2 + x + 1 = x² + 4·x + 3
(f + g)(x) = x² + 4·x + 3
(iii) (f·g)(x) = f(x) × g(x)
∴ (f·g)(x) = (x² + 3·x + 2) × (x + 1) = x³ + 3·x² + 2·x + x² + 3·x + 2 = x³ + 4·x² + 5·x + 2
(f·g)(x) = x³ + 4·x² + 5·x + 2
Answer:
A
Step-by-step explanation:
Answer:
.id.k
Step-by-step explanation: