The answer is D because moving all of the body parts would get the heart racing and the blood pumping!
The volume occupied by 0.102 mole of the helium gas is 2.69 L
<h3>Data obtained from the question</h3>
The following data were obtained from the question:
- Number of mole (n) = 0.102 moles
- Pressure (P) = 0.95 atm
- Temperature (T) = 305 K
- Gas constant (R) = 0.0821 atm.L/Kmol
- Volume (V) =?
<h3>How to determine the volume </h3>
The volume of the gas can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
Divide both sides by P
V = nRT / P
V = (0.102 × 0.0821 × 305) / 0.95
V = 2.69 L
Thus, the volume of the gas is 2.69 L
Learn more about ideal gas equation:
brainly.com/question/4147359
#SPJ1
Answer:
The formula to use is
VOLUME=LENGTH×BREADTH×HEIGHT
PLEASE GIVE BRAINLIEST
The mass of ammonia required to produce 2.40 × 10⁵ kg of (NH₄)₂SO₄ is 6.18 * 10⁴ Kg of ammonia.
<h3>What mass in kilograms of ammonia are required to produce 2.40 × 10⁵ kg of (NH₄)₂SO₄?</h3>
The mass of ammonia required to produce 2.40 × 10⁵ kg of (NH₄)₂SO₄ is determined from the mole ratio of the reaction.
The mole ratio of the reaction is obtained from the balanced equation of the reaction given below:
- 2NH₃(g) + H₂SO₄(aq) → (NH₄)₂SO₄(aq)
Mole ratio of NH₃ and (NH₄)₂SO₄ is 2: 1
Mass of 2 moles of ammonia = 2 * 17 = 34 g
Mass of 1 mole of (NH₄)₂SO₄ = 132 g
Mass of ammonia required = 34/132 * 2.40 × 10⁵ kg
Mass of ammonia required = 6.18 * 10⁴ Kg of ammonia.
In conclusion, the mole ratio is used to determine the mass of ammonia required.
Learn more about mole ratio at: brainly.com/question/19099163
#SPJ1