Answer:
Alkali metal hydroxides can be used to test the identity of metals in certain salts. The colour of the precipitate will help identify the metal : Calcium hydroxide is soluble; no precipitate is formed.
Answer:
The hydroxyl group
Explanation:
The molecular formulas of the above alcohols are
CH₃CH₂-OH
CH₃CH₂CH₂CH₂CH₂CH₂CH₂CH₂-OH
CH₃-OH
CH₃CH(CH₃)CH₂CH₂-OH
The functional group that is characteristic of all alcohols is the hydroxyl group (-OH).
Answer:
Na₂CO₃•H₂O
Explanation:
After it is heated, the remaining mass is the mass of sodium carbonate.
30.2 g Na₂CO₃
Mass is conserved, so the difference is the mass of the water:
35.4 g − 30.2 g = 5.2 g H₂O
Convert masses to moles:
30.2 g Na₂CO₃ × (1 mol Na₂CO₃ / 106 g Na₂CO₃) = 0.285 mol Na₂CO₃
5.2 g H₂O × (1 mol H₂O / 18.0 g H₂O) = 0.289 mol H₂O
Normalize by dividing by the smallest:
0.285 / 0.285 = 1.00 mol Na₂CO₃
0.289 / 0.285 = 1.01 mol H₂O
The ratio is approximately 1:1. So the formula of the hydrate is Na₂CO₃•H₂O.
Answer:
NH4Cl, NaCl, Ba(OH)2, NaOH
Explanation:
NH4Cl is an acidic salt formed by the neutralization of a strong acid (HCl) with a weak base (NH3). Hence, it will habe a PH<7 (the lowest PH).
NaCl is a neutral salt,formed by neutralization of a strong acid (HCl) with a strong base (NaOH). Hence, it will have a PH of 7.
Ba(OH)2 is a weak base. Therefore, it will have a PH between 8 and 10.
NaOh meanwhile, is a strong base. Therefore, it will have a PH between 10 to 13.
Hence, we have
NH4Cl < NaCl < Ba(OH)2 < NaOH
Answer:
chemical substances being held together by attraction of atoms to each other through sharing, as well as exchanging, of electrons -or electrostatic forces.
Explanation:
I hope this helps