Their average speed during the trip is 53 km/ hr approximately
Explanation: The family traveled 80 km/hr for an hour and then trabeled 40 km/ hr for 2 hours. So they traveled 80 km in one hour then 80 km in the next 2 hours. Total they traveled 160 km in 3 hours.
Average speed = distance traveled/ taken time
= 160/3 = 53.33
Answer:
The radius of tantalum (Ta) atom is 
Explanation:
From the Body-centered cubic (BBC) crystal structure we know that a unit cell length <em>a </em>and atomic radius <em>R </em>are related through

So the volume of the unit cell
is

We can compute the theoretical density ρ through the following relationship

where
n = number of atoms associated with each unit cell
A = atomic weight
= volume of the unit cell
= Avogadro’s number (
atoms/mol)
From the information given:
A = 180.9 g/mol
ρ = 16.6 g/cm^3
Since the crystal structure is BCC, n, the number of atoms per unit cell, is 2.
We can use the theoretical density ρ to find the radio <em>R</em> as follows:

Solving for <em>R</em>
![\rho=\frac{nA}{(\frac{64\sqrt{3}R^3}{9})N_{a}}\\\frac{64\sqrt{3}R^3}{9}=\frac{nA}{\rho N_{a}}\\R^3=\frac{nA}{\rho N_{a}}\cdot \frac{1}{\frac{64\sqrt{3}}{9}} \\R=\sqrt[3]{\frac{nA}{\rho N_{a}}\cdot \frac{1}{\frac{64\sqrt{3}}{9}}}](https://tex.z-dn.net/?f=%5Crho%3D%5Cfrac%7BnA%7D%7B%28%5Cfrac%7B64%5Csqrt%7B3%7DR%5E3%7D%7B9%7D%29N_%7Ba%7D%7D%5C%5C%5Cfrac%7B64%5Csqrt%7B3%7DR%5E3%7D%7B9%7D%3D%5Cfrac%7BnA%7D%7B%5Crho%20N_%7Ba%7D%7D%5C%5CR%5E3%3D%5Cfrac%7BnA%7D%7B%5Crho%20N_%7Ba%7D%7D%5Ccdot%20%5Cfrac%7B1%7D%7B%5Cfrac%7B64%5Csqrt%7B3%7D%7D%7B9%7D%7D%20%5C%5CR%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BnA%7D%7B%5Crho%20N_%7Ba%7D%7D%5Ccdot%20%5Cfrac%7B1%7D%7B%5Cfrac%7B64%5Csqrt%7B3%7D%7D%7B9%7D%7D%7D)
Substitution for the various parameters into above equation yields
![R=\sqrt[3]{\frac{2\cdot 180.9}{16.6\cdot 6.023 \times 10^{23}}\cdot \frac{1}{\frac{64\sqrt{3}}{9}}}\\R = 1.43 \times 10^{-8} \:cm = 0.143 \:nm](https://tex.z-dn.net/?f=R%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B2%5Ccdot%20180.9%7D%7B16.6%5Ccdot%206.023%20%5Ctimes%2010%5E%7B23%7D%7D%5Ccdot%20%5Cfrac%7B1%7D%7B%5Cfrac%7B64%5Csqrt%7B3%7D%7D%7B9%7D%7D%7D%5C%5CR%20%3D%201.43%20%5Ctimes%2010%5E%7B-8%7D%20%5C%3Acm%20%3D%200.143%20%5C%3Anm)
Answer: Specific heat capacity is the measurement of how much energy (in J) has to be added to 1 kg of a substance to increase the temperature of that substance by 1 o C. Simply, substances with a low specific heat capacity heat up quickly - but then they lose their heat quickly. Substances with a high specific heat capacity require a large amount of heat to be added to change their temperature - but then they hold their heat much longer.
Explanation: Think of heating a pot of soup on the stove and stirring it with a metal spoon. If you leave the spoon sitting in the pot for even a few minutes and you return, the spoon will be hot enough to burn your hands - and the soup will feel only slightly warmer. This happens because the specific heat capacity of the metal spoon is much lower than that of the water in the soup. Water has the highest specific heat capacity of any liquid.
Hope this helps!!!!!
can i get brainliest? thxxx