1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
crimeas [40]
3 years ago
15

Jamie wants to put tiles on the walls and floor of his room (but not on the ceiling). The length of his room is 10 ft, the width

is 14 ft, and the height is 12 ft. If each tile is 1 ft long and 1 ft wide, how many tiles will Jamie need/
Mathematics
1 answer:
slava [35]3 years ago
8 0

Answer:

Jamie would need 140 tiles.

You might be interested in
Create three geometric sequences of your own (including one that is decreasing). Extend your sequences to include five terms. Th
Karo-lina-s [1.5K]

Answer:

a)  a_n=5\,\,(2)^{n-1}

b)  b_n=100\,\,(\frac{1}{2} )^{n-1}

c)  c_n=160\,\,(-\frac{1}{2} )^{n-1}

Step-by-step explanation:

a)  Geometric sequence with first term 5 and common ratio 2, where the nth term can be calculated via:

a_n=5\,\,(2)^{n-1}

The first five terms are: a_1=5;\,\,\,a_2=10;\,\,\,a_3=20; \,\,\,a_4=40;\,\,\,a_5=80

b) Geometric sequence with first term 100 and common ratio 1/2, where the nth term can be calculated via:

b_n=100\,\,(\frac{1}{2} )^{n-1}

The first five terms are: a_1=100;\,\,\,a_2=50;\,\,\,a_3=25; \,\,\,a_4=12.5;\,\,\,a_5=6.25

c)  Geometric sequence with first term 160 and common ratio -1/2, where the nth term can be calculated via:

c_n=160\,\,(-\frac{1}{2} )^{n-1}

The first five terms are: a_1=160;\,\,\,a_2=-80;\,\,\,a_3=40; \,\,\,a_4=-20;\,\,\,a_5=10

4 0
3 years ago
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
The quotient of a number and three, increased by one <br><br><br> Using the variable N
solniwko [45]
N÷3+1 or can be stated as 3÷n+1

5 0
3 years ago
Find the area of each composite figure. Use 3.14 for π. Round to the nearest tenth if necessary. Whats the correct label?
GuDViN [60]

Step-by-step explanation:

Square= bh

Square= 2×2=

half-circle = 1/2Pi*r×r

half-circle 2 = 1/2Pi*r×r

We would put 1/2 for the half-circle because its half of a circle. And we square it because where finding area. The middle is square, and the two up top is half a circle. Hope that helps :D

8 0
3 years ago
Read 2 more answers
This is worth 30 points
Mama L [17]

Answer:

There's 3 questions which one do I answer?

Step-by-step explanation:

6 0
3 years ago
Other questions:
  • Kelsie sold digital cameras on her website. She bought the cameras for $65 each and included a 60% markup to get the selling pri
    14·1 answer
  • Answer this and I’ll make you Brainly if it’s right
    13·2 answers
  • Beginning at 8:30 A.M., tours of the National Capitol leave every 15 minutes. Tours for the White House leave every 20 minutes.
    7·1 answer
  • If f(x) = 6x - 4. what is f(x) when x = 8?​
    11·1 answer
  • Which equation has the same solution as x2 + 16x – 11 = 4?
    6·1 answer
  • On Monday, 400 students went on a trip to the zoo. All 9
    15·1 answer
  • If C=x^{2}+7C=x 2 +7 and D=3x^{2}-4x+3,D=3x 2 −4x+3, find an expression that equals 3C+3D3C+3D in standard form.
    5·1 answer
  • 2. I earned $9. I bought 4 candy bars for $0.85 each. How much money do I
    14·2 answers
  • Part A
    9·2 answers
  • Bus Stop #2:
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!