The question is incomplete. The complete question is as follows:
Solve for X. Assume X is a 2x2 matrix and I denotes the 2x2 identity matrix. Do not use decimal numbers in your answer. If there are fractions, leave them unevaluated. 
![\left[\begin{array}{cc}2&8\\-6&-9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%268%5C%5C-6%26-9%5Cend%7Barray%7D%5Cright%5D) · X·
· X·![\left[\begin{array}{ccc}9&-3\\7&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-3%5C%5C7%26-6%5Cend%7Barray%7D%5Cright%5D) =<em>I</em>.
 =<em>I</em>.
First, we have to identify the matrix <em>I. </em>As it was said, the matrix is the identiy matrix, which means
<em>I</em> = ![\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D) 
 
So, ![\left[\begin{array}{cc}2&8\\-6&-9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%268%5C%5C-6%26-9%5Cend%7Barray%7D%5Cright%5D) · X·
· X·![\left[\begin{array}{ccc}9&-3\\7&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-3%5C%5C7%26-6%5Cend%7Barray%7D%5Cright%5D) =
 =  ![\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
Isolating the X, we have
X·![\left[\begin{array}{ccc}9&-3\\7&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-3%5C%5C7%26-6%5Cend%7Barray%7D%5Cright%5D) =
= ![\left[\begin{array}{cc}2&8\\-6&-9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D2%268%5C%5C-6%26-9%5Cend%7Barray%7D%5Cright%5D) -
 -  ![\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
Resolving:
X·![\left[\begin{array}{ccc}9&-3\\7&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-3%5C%5C7%26-6%5Cend%7Barray%7D%5Cright%5D) =
= ![\left[\begin{array}{ccc}2-1&8-0\\-6-0&-9-1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2-1%268-0%5C%5C-6-0%26-9-1%5Cend%7Barray%7D%5Cright%5D)
X·![\left[\begin{array}{ccc}9&-3\\7&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-3%5C%5C7%26-6%5Cend%7Barray%7D%5Cright%5D) =
=![\left[\begin{array}{ccc}1&8\\-6&-10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%268%5C%5C-6%26-10%5Cend%7Barray%7D%5Cright%5D)
Now, we have a problem similar to A.X=B. To solve it and because we don't divide matrices, we do X=A⁻¹·B. In this case,
X=![\left[\begin{array}{ccc}9&-3\\7&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-3%5C%5C7%26-6%5Cend%7Barray%7D%5Cright%5D) ⁻¹·
⁻¹·![\left[\begin{array}{ccc}1&8\\-6&-10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%268%5C%5C-6%26-10%5Cend%7Barray%7D%5Cright%5D)
Now, a matrix with index -1 is called Inverse Matrix and is calculated as: A . A⁻¹ = I.
So, 
![\left[\begin{array}{ccc}9&-3\\7&-6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D9%26-3%5C%5C7%26-6%5Cend%7Barray%7D%5Cright%5D) ·
·![\left[\begin{array}{ccc}a&b\\c&d\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D) =
=![\left[\begin{array}{ccc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
9a - 3b = 1
7a - 6b = 0
9c - 3d = 0
7c - 6d = 1
Resolving these equations, we have a= ; b=
; b= ; c=
; c= and d=
 and d= . Substituting:
. Substituting:
X= ![\left[\begin{array}{ccc}\frac{2}{11} &\frac{-1}{11} \\\frac{7}{33}&\frac{-3}{11}  \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B2%7D%7B11%7D%20%26%5Cfrac%7B-1%7D%7B11%7D%20%5C%5C%5Cfrac%7B7%7D%7B33%7D%26%5Cfrac%7B-3%7D%7B11%7D%20%20%5Cend%7Barray%7D%5Cright%5D) ·
·![\left[\begin{array}{ccc}1&8\\-6&-10\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%268%5C%5C-6%26-10%5Cend%7Barray%7D%5Cright%5D)
Multiplying the matrices, we have
X=![\left[\begin{array}{ccc}\frac{8}{11} &\frac{26}{11} \\\frac{39}{11}&\frac{198}{11}  \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B8%7D%7B11%7D%20%26%5Cfrac%7B26%7D%7B11%7D%20%5C%5C%5Cfrac%7B39%7D%7B11%7D%26%5Cfrac%7B198%7D%7B11%7D%20%20%5Cend%7Barray%7D%5Cright%5D)
 
        
             
        
        
        
Answer:
D. 42
Step-by-step explanation:
Base = 10+4 (ft) 
10+4 = 14
Height = 3
14 x 3 = 42
 
        
             
        
        
        
Answer:
Step-by-step explanation:
step a system of two equations         c = child ticket     a = adult ticket
eq 1)  2c + 1a = 8.2            multiply by 2
eq 2) 3c + 2a = 14.1
I will multiply eq 1 times TWO and subtract eq 2 from eq 1a)
          eq 1a)  4c + 2a = 16.4
           eq 2)  3c + 2a = 14.1
subtract  (4c - 3c) + (2a -2a)  = 16.4 - 14.1   
                     c      +       0       =   2.3 euros     for one child ticket
Now find the adult ticket price,  plug 2.3 for c into eq 1)
      eq 1)  2c + 1a = 8.2
      eq 1)  2(2.3) + 1a = 8.2         solve for a
                  4.6  + a   =  8.2         substract 4.6 from both sides
                              a =  8.2 - 4.6
                                =   3.6 euros    for one adult ticket
double check using eq 2)    we know c and a values
     eq 2)  3c + 2a = 14.1
     eq 2)  3(2.3) + 2(3.6) = 14.1
                    6.9 + 7.2    =  14.1
                            14.1    =  14.1
 
        
             
        
        
        
Answer:
18 1/2 miles
Step-by-step explanation:
3 7/10 * 5
Change to an improper fraction
(10* 3 + 7)/10    * 5
37/10 *5
Rewriting
37 * 5/10
37/2
Changing back to an mixed number
2 goes into 37 18 times with 1 left over
18 1/2