Answer:
I am in for the game......
Step-by-step explanation:
The sum is 1225
Solution :
The numbers from 150 to 200 divisible by 7 are 154,161 ,168,…., 196
Here, a=154,d=7a=154,d=7 and tn=196tn=196
tn=a+(n−1)dtn=a+(n-1)d …(Formula )
∴196=154+(n−1)×7∴196=154+(n-1)×7 …(Substituting the values )
∴196−154=(n−1)×7∴196-154=(n-1)×7
∴427=n−1∴427=n-1 ∴n−1=6∴n-1=6 ∴n=7∴n=7
Now, we find the sum of 7 numbers.
Sn=n2[t1+tn]Sn=n2[t1+tn] ...(Formula )
=72[154+196)=72[154+196)
=72×350=72×350
=7×175=7×175
=1225
1) y = x
2) y = -(1/5)x + 4
3) y = -6x + 2
4) y = x + 2
5) y = (1/2)x + 2
6) y = -x + 4
7) y = -x + 1
8) y = (3/2)x + 2
9) y = -(3/2)x - 2
10) y = 2x - 1
Answer:
<h2>
y = ²/₃x + ⁴/₃</h2>
Step-by-step explanation:
The point-slope form of the equation of line: y - y₁ = m(x - x₁), where m is the slope and (x₁, y₁) is the point the line passing through.
y=m₁x+b₁ ║ y=m₂x+b₂ ⇔ m₁ = m₂
{Two lines are parallel if their slopes are equal}
y = 2/3x + 1 ⇒ m₁ = 2/3 ⇒ m₂ = 2/3
(-5, -2) ⇒ x₁ = -5, y₁ = -2
point-slope form:
y - (-2) = 2/3(x - (-5))
y + 2 = 2/3(x + 5)
y + 2 = 2/3x + 10/3 {subtact 2 from both sides}
y = 2/3x + 4/3 ← slope-intercept form