Answer:
Step-by-step explanation:
Since the length of time taken on the SAT for a group of students is normally distributed, we would apply the formula for normal distribution which is expressed as
z = (x - u)/s
Where
x = length of time
u = mean time
s = standard deviation
From the information given,
u = 2.5 hours
s = 0.25 hours
We want to find the probability that the sample mean is between two hours and three hours.. It is expressed as
P(2 lesser than or equal to x lesser than or equal to 3)
For x = 2,
z = (2 - 2.5)/0.25 = - 2
Looking at the normal distribution table, the probability corresponding to the z score is 0.02275
For x = 3,
z = (3 - 2.5)/0.25 = 2
Looking at the normal distribution table, the probability corresponding to the z score is 0.97725
P(2 lesser than or equal to x lesser than or equal to 3)
= 0.97725 - 0.02275 = 0.9545
Answer:
He paid 80 at the start, so his starting must have been 80
Step-by-step explanation:
80+40=120...
so either 0, or 80 because he owed nothing, or he owed the 80, then the 40 for medication
I hope this helps!
Answer:
a.) dx3x² + 2
Use the properties of integrals
That's
integral 3x² + integral 2
= 3x^2+1/3 + 2x + c
= 3x³/3 + 2x + c
= x³ + 2x + C
where C is the constant of integration
b.) x³ + 2x
Use the properties of integrals
That's
integral x³ + integral 2x
= x^3+1/4 + 2x^1+1/2
= x⁴/4 + 2x²/2 + c
= x⁴/4 + x² + C
c.) dx6x 5 + 5
Use the properties of integrals
That's
integral 6x^5 + integral 5
= 6x^5+1/6 + 5x
= 6x^6/6 + 5x
= x^6 + 5x + C
d.) x^6 + 5x
integral x^6 + integral 5x
= x^6+1/7 + 5x^1+1/2
= x^7/7 + 5/2x² + C
Hope this helps
19 minutes I think just divide 323 and 17
Answer:
2
Step-by-step explanation:
Maybe they got confused or could not read her handwriting well because im pretty sure it is 2