1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tom [10]
4 years ago
5

Subtract (2x - 5) from (6x + 1)

Mathematics
2 answers:
adoni [48]4 years ago
7 0
(6x+1)-(2x-5)

6x+1-2x+5

4x+6



sergeinik [125]4 years ago
6 0
6x + 1 - (2x - 5) =
6x + 1 - 2x + 5 =
4x + 6 <==
You might be interested in
Write each percent as a fraction in simplest form?<br><br> 1. 75%
dem82 [27]

Answer:

3/4

Step-by-step explanation:

As a decimal, 75% is 0.75, which is 3/4

5 0
3 years ago
Do you know this I just need question number 6 I will give you a lot point or likes.
tatyana61 [14]

Answer: 2.117647

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Please help . Really need done . Thank you . Will mark Brainly .
Gekata [30.6K]

Answer:

(5,2)

Step-by-step explanation:

Answer (5,2)

                         N(2)

W                                                  E(5)

                         S












8 0
3 years ago
Solve for x.<br> 9(x + 1) = 25 + x<br> x = 2<br> x = 3<br> x=4<br> x = 5<br> O
Marta_Voda [28]

Answer:

x=2

Step-by-step explanation:

9x+9=25+x

9x-x=25-9

8x=16

x=2

4 0
3 years ago
Read 2 more answers
Evaluate the iterated integral. $$ \int\limits_0^{2\pi}\int\limits_0^y\int\limits_0^x {\color{red}9} \cos(x+y+z)\,dz\,dx\,dy $$
KengaRu [80]
\displaystyle\int_{y=0}^{y=2\pi}\int_{x=0}^{x=y}\int_{z=0}^{z=x}\cos(x+y+z)\,\mathrm dz\,\mathrm dx\,\mathrm dy=\int_{y=0}^{y=2\pi}\int_{x=0}^{x=y}\sin(x+y+z)\bigg|_{z=0}^{z=x}\,\mathrm dx\,\mathrm dy
\displaystyle=\int_{y=0}^{y=2\pi}\int_{x=0}^{x=y}\sin(2x+y)-\sin(x+y)\,\mathrm dx\,\mathrm dy
\displaystyle=\int_{y=0}^{y=2\pi}-\frac12\left(\cos(2x+y)-2\cos(x+y)\right)\bigg|_{x=0}^{x=y}\,\mathrm dx\,\mathrm dy
\displaystyle=\int_{y=0}^{y=2\pi}-\frac12\left((\cos3y-2\cos2y)-(\cos y-2\cos y)\right)\bigg|_{x=0}^{x=y}\,\mathrm dy
\displaystyle=-\frac12\int_{y=0}^{y=2\pi}(\cos3y-2\cos2y+\cos y)\,\mathrm dy
\displaystyle=-\frac12\left(\frac13\sin3y-\sin2y+\sin y\right)\bigg|_{y=0}^{y=2\pi}
=0
4 0
3 years ago
Other questions:
  • A baker decorates 42 cupcakes in 30
    8·2 answers
  • AA ream of paper contains 500 sheets per paper Norm has 373 sheets of paper left from the rim express the portion of the rim Nor
    6·2 answers
  • Explain how dilations and functions are related?
    6·2 answers
  • What is 8a = 5a + 21 please and thank you
    14·2 answers
  • Which phrase best describes taxable income?
    10·1 answer
  • Circle X is shown in the diagram.
    9·2 answers
  • B-4/6=b/2. Solve for b.
    12·1 answer
  • PLEASE HELP!!! THIS IS TIMED!!!!!! PLEASE HELP ME!!!!! PLEASE!! THIS IS TIMED!!! PLEASE HELP!!!!!!
    7·2 answers
  • WILL GIVE BRAINLIEST BUT BE QUICK PLS it’s question number 6
    12·1 answer
  • *PLEASE ANSWER!!!, I DONT GET IT!! HELP!!*
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!