Step-by-step explanation:
<h3>
<u>Given Question </u></h3>
The sum of the series is
![\tt{ {\bigg[1\dfrac{2}{3} \bigg]}^{2} + {\bigg[2\dfrac{1}{3} \bigg]}^{2} + {3}^{2} + {\bigg[3\dfrac{2}{3} \bigg]}^{2} + - - 10 \: terms}](https://tex.z-dn.net/?f=%5Ctt%7B%20%7B%5Cbigg%5B1%5Cdfrac%7B2%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%7B%5Cbigg%5B2%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%20%2B%20%20%7B3%7D%5E%7B2%7D%20%2B%20%7B%5Cbigg%5B3%5Cdfrac%7B2%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%20-%20%20-%20%2010%20%5C%3A%20terms%7D)





Given series is
![\rm :\longmapsto\: {\bigg[1\dfrac{2}{3} \bigg]}^{2} + {\bigg[2\dfrac{1}{3} \bigg]}^{2} + {3}^{2} + {\bigg[3\dfrac{2}{3} \bigg]}^{2} + - - - 10 \: terms](https://tex.z-dn.net/?f=%5Crm%20%3A%5Clongmapsto%5C%3A%20%7B%5Cbigg%5B1%5Cdfrac%7B2%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%7B%5Cbigg%5B2%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%20%2B%20%20%7B3%7D%5E%7B2%7D%20%2B%20%7B%5Cbigg%5B3%5Cdfrac%7B2%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%20-%20%20-%20%20-%2010%20%5C%3A%20terms)
can be rewritten as
![\rm \: = \: {\bigg[\dfrac{5}{3} \bigg]}^{2} + {\bigg[\dfrac{7}{3} \bigg]}^{2} + {\bigg[\dfrac{9}{3} \bigg]}^{2} + {\bigg[\dfrac{11}{3} \bigg]}^{2} + - - - 10 \: terms](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%20%7B%5Cbigg%5B%5Cdfrac%7B5%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%7B%5Cbigg%5B%5Cdfrac%7B7%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%7B%5Cbigg%5B%5Cdfrac%7B9%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%20%20%7B%5Cbigg%5B%5Cdfrac%7B11%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%20-%20%20-%20%20-%2010%20%5C%3A%20terms)
![\rm \: = \: \dfrac{1}{9}[ {5}^{2} + {7}^{2} + {9}^{2} + - - - 10 \: terms \: ]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdfrac%7B1%7D%7B9%7D%5B%20%7B5%7D%5E%7B2%7D%20%2B%20%20%7B7%7D%5E%7B2%7D%20%2B%20%20%7B9%7D%5E%7B2%7D%20%2B%20%20-%20%20-%20%20-%2010%20%5C%3A%20terms%20%5C%3A%20%5D)
Now, here, 5, 7, 9 forms an AP series with first term 5 and common difference 2.
So, its general term is given by 5 + ( n - 1 )2 = 5 + 2n - 2 = 2n + 3
So, above series can be represented as

![\rm \: = \: \dfrac{1}{9}\displaystyle\sum_{n=1}^{10}\bigg[ {4n}^{2} + 9 + 12n\bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdfrac%7B1%7D%7B9%7D%5Cdisplaystyle%5Csum_%7Bn%3D1%7D%5E%7B10%7D%5Cbigg%5B%20%7B4n%7D%5E%7B2%7D%20%2B%209%20%2B%2012n%5Cbigg%5D)
![\rm \: = \: \dfrac{1}{9}\bigg[\displaystyle\sum_{n=1}^{10} {4n}^{2} + \displaystyle\sum_{n=1}^{10}9 + 12\displaystyle\sum_{n=1}^{10}n\bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdfrac%7B1%7D%7B9%7D%5Cbigg%5B%5Cdisplaystyle%5Csum_%7Bn%3D1%7D%5E%7B10%7D%20%7B4n%7D%5E%7B2%7D%20%2B%20%5Cdisplaystyle%5Csum_%7Bn%3D1%7D%5E%7B10%7D9%20%2B%2012%5Cdisplaystyle%5Csum_%7Bn%3D1%7D%5E%7B10%7Dn%5Cbigg%5D)
![\rm \: = \: \dfrac{1}{9}\bigg[4\displaystyle\sum_{n=1}^{10} {n}^{2} +9 \displaystyle\sum_{n=1}^{10}1 + 12\displaystyle\sum_{n=1}^{10}n\bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdfrac%7B1%7D%7B9%7D%5Cbigg%5B4%5Cdisplaystyle%5Csum_%7Bn%3D1%7D%5E%7B10%7D%20%7Bn%7D%5E%7B2%7D%20%2B9%20%5Cdisplaystyle%5Csum_%7Bn%3D1%7D%5E%7B10%7D1%20%2B%2012%5Cdisplaystyle%5Csum_%7Bn%3D1%7D%5E%7B10%7Dn%5Cbigg%5D)
![\rm \: = \: \dfrac{4}{9}\bigg[\dfrac{10(10 + 1)(20 + 1)}{6} \bigg] + 10 + \dfrac{4}{3}\bigg[\dfrac{10(10 + 1)}{2} \bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdfrac%7B4%7D%7B9%7D%5Cbigg%5B%5Cdfrac%7B10%2810%20%2B%201%29%2820%20%2B%201%29%7D%7B6%7D%20%5Cbigg%5D%20%2B%2010%20%2B%20%5Cdfrac%7B4%7D%7B3%7D%5Cbigg%5B%5Cdfrac%7B10%2810%20%2B%201%29%7D%7B2%7D%20%5Cbigg%5D)
![\rm \: = \: \dfrac{4}{9}\bigg[\dfrac{10(11)(21)}{6} \bigg] + 10 + \dfrac{4}{3}\bigg[\dfrac{10(11)}{2} \bigg]](https://tex.z-dn.net/?f=%5Crm%20%5C%3A%20%20%3D%20%20%5C%3A%20%5Cdfrac%7B4%7D%7B9%7D%5Cbigg%5B%5Cdfrac%7B10%2811%29%2821%29%7D%7B6%7D%20%5Cbigg%5D%20%2B%2010%20%2B%20%5Cdfrac%7B4%7D%7B3%7D%5Cbigg%5B%5Cdfrac%7B10%2811%29%7D%7B2%7D%20%5Cbigg%5D)



Hence,
![\boxed{\tt{ {\bigg[1\dfrac{2}{3} \bigg]}^{2} + {\bigg[2\dfrac{1}{3} \bigg]}^{2} + {3}^{2} + {\bigg[3\dfrac{2}{3} \bigg]}^{2} + - - 10 \: terms = \frac{2290}{9}}}](https://tex.z-dn.net/?f=%5Cboxed%7B%5Ctt%7B%20%7B%5Cbigg%5B1%5Cdfrac%7B2%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%7B%5Cbigg%5B2%5Cdfrac%7B1%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%20%2B%20%20%7B3%7D%5E%7B2%7D%20%2B%20%7B%5Cbigg%5B3%5Cdfrac%7B2%7D%7B3%7D%20%5Cbigg%5D%7D%5E%7B2%7D%20%2B%20%20-%20%20-%20%2010%20%5C%3A%20terms%20%3D%20%20%5Cfrac%7B2290%7D%7B9%7D%7D%7D)
Well i am thinking the length could be 24 and thw width cold be 12 remember add all the sides that is your perimeter the area is length times width
Answer:
12.5
Step-by-step explanation:
6 x 12.5 = 75
75 / 6 = 12.5
12.5 is the answer.
1. controle if no numbers are missing and the numbers are in the right order
2. the formula is x-a so a=1
3. write everything out in the scheme
4. let the first number drop down
5. multiply the answers by a
6. add the number that are under each other
7. repeat 5 and 6 until to you're done
8. write down the equation
9. last number in the scheme is your residue, which means that you write it at the end, outside of the ()